自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(49)
  • 收藏
  • 关注

原创 30.决策树:会问问题的智能算法

决策树:智能提问的机器学习算法 决策树是一种直观易懂的机器学习算法,通过一系列if-then规则进行数据分类或回归预测。其核心思想类似"20个问题"游戏,通过逐步提问缩小范围直至得出结论。决策树由根节点、内部节点和叶子节点组成,采用信息增益或基尼系数等指标选择最佳分割特征。算法优势在于无需数据预处理、自动特征选择且结果可解释性强;但存在易过拟合、对噪声敏感等缺点。实践应用包括分类问题(如判断蘑菇毒性)和回归问题(如房价预测),通过Scikit-learn等工具可快速实现模型训练与评估。决

2025-08-14 17:15:38 789

原创 28.分类算法:让机器学会分类

分类算法是机器学习中让机器学会自动分类数据的技术,广泛应用于垃圾邮件过滤、医学诊断和图像识别等领域。核心思想包括特征提取、训练过程和决策边界划分。常见算法有:1)逻辑回归,通过概率进行分类;2)支持向量机(SVM),寻找最优分界线;3)K近邻(KNN),基于邻居投票决策;4)朴素贝叶斯,利用概率论计算类别可能性。这些算法可处理二分类、多分类和多标签分类问题,通过提取数据特征并建立决策模型,实现智能分类功能。

2025-08-14 17:14:29 517

原创 28.分类算法:让机器学会分类

文章摘要:分类算法让机器学会智能分类 本文系统介绍了分类算法在机器学习中的应用。从基础概念入手,解释了分类算法如何通过特征提取和决策边界实现数据分类,与回归预测形成对比。文章详细介绍了四种常见分类算法:逻辑回归(概率判断)、支持向量机(最优分界)、K近邻(邻居投票)和朴素贝叶斯(概率推理),并提供了Python代码示例展示其实现原理。通过垃圾邮件分类、医学诊断等场景,生动展现了分类算法在实际中的应用价值。文章还涵盖了算法评估、多分类处理等进阶内容,为读者提供了从理论到实践的完整学习路径。

2025-08-12 22:53:29 238

原创 27.线性回归:预测数字的入门神器

线性回归:预测数字的入门神器 摘要: 线性回归是机器学习中最基础的预测模型,通过建立自变量(X)与因变量(Y)之间的线性关系进行预测。本文从一元线性回归(Y=aX+b)入手,用冰淇淋销量预测案例生动讲解其原理,并详细演示了房价预测实战项目。文章还介绍了多元线性回归模型,用于处理多因素影响下的预测问题,如同时考虑面积、楼层、房龄等因素的房价预测。通过Python代码示例展示了数据准备、模型训练、预测评估等完整流程,并配有直观的可视化图表,帮助读者理解模型性能评估方法。最后简要提及了模型评估指标和常见问题解决方

2025-08-12 22:53:12 722

原创 26.Scikit-learn实战:机器学习的工具箱

Scikit-learn(简称sklearn)是Python生态系统中最流行的机器学习库,就像是一个装满了各种机器学习算法的工具箱。如果说NumPy是数值计算的基础,Pandas是数据处理的利器,那么Scikit-learn就是机器学习的瑞士军刀。"""自定义评分函数:惩罚高估"""# 高估的惩罚更大# 使用自定义评分Scikit-learn是什么:机器学习的瑞士军刀,API统一,文档完善核心概念:估计器、fit/predict/score三大方法算法应用:分类、回归、聚类的实战案例数据预处理。

2025-08-10 22:27:40 618

原创 25.机器学习入门:让机器变聪明的魔法课

官方定义:机器学习是一种使计算机系统能够从数据中自动学习和改进的方法,而无需明确编程。人话翻译:就是让电脑像小孩子一样,通过看例子来学会做事情,而不是我们一步一步教它怎么做。机器学习本质:让机器从数据中学习规律,而不是硬编码规则三大学习范式:监督学习、无监督学习、强化学习基本工作流程:数据收集→预处理→建模→训练→评估→部署应用无处不在:推荐系统、图像识别、自然语言处理等。

2025-08-10 22:27:20 924

原创 24.Web爬虫:让程序帮你收集数据

Web爬虫是自动化程序,能模拟人类上网行为收集数据。它通过发送HTTP请求获取网页内容,解析HTML提取信息,并存储数据。爬虫可用于价格监控、新闻聚合、市场研究等场景。 Python中常用Requests库发送HTTP请求,支持GET/POST方法,可设置请求头和参数。BeautifulSoup库则用于解析HTML结构,通过CSS选择器定位元素。 实战中可开发天气采集器、新闻抓取器等工具。动态网页需使用Selenium库处理。开发爬虫需遵守robots.txt协议,尊重网站数据使用条款。

2025-08-06 16:51:49 1040

原创 23.统计分析:从数据中挖掘洞察

本文摘要: 《统计分析:从数据中挖掘洞察》是一篇关于数据分析的实用指南。文章将统计分析比作"数据侦探"工作,介绍了如何通过Python工具从数据中提取有价值的信息。主要内容包括:1)描述性统计(集中趋势、离散程度和分布形状分析);2)假设检验方法(单样本t检验和独立样本t检验);3)相关性和回归分析等内容。文章通过模拟学生成绩数据,详细演示了如何使用Python进行统计计算和可视化,帮助读者理解数据背后的模式和规律。文中包含了丰富的代码示例和图表展示,适合数据分析初学者学习和实践。

2025-08-06 16:51:25 640

原创 22.数据探索:像侦探一样分析数据

数据探索摘要:像侦探一样分析数据 数据探索(EDA)是数据分析的第一步,如同侦探调查案件。通过可视化工具和统计方法,揭示数据集的特征与规律: 基本侦查:了解数据规模、类型和缺失情况 数值分析:检查分布、异常值及统计指标 分类变量:探索频次分布和类别关系 关系探索:发现变量间的相关性模式 异常检测:识别潜在问题数据点 常用工具包括Pandas、Matplotlib和Seaborn等Python库。通过系统化的探索,为后续建模奠定基础,避免盲目分析带来的偏差。

2025-08-02 09:34:07 899

原创 21.数据清洗:给脏数据洗个澡

数据清洗:给数据"洗澡"的关键步骤 本文介绍了数据清洗的完整流程,将脏数据比喻为需要清洁的"脏孩子"。主要内容包括: 数据清洗的重要性:提高分析准确性、模型性能和计算效率 常见数据问题: 缺失值("空心萝卜") 重复数据("照镜子的多个自己") 异常值("人群中的姚明") 格式不统一("不同校服") 核心清洗技术: 缺失值处理(删除/填充/插值) 重复数据处理(基于列去重) 异常值识别与处

2025-08-02 09:33:45 1029

原创 20.Seaborn进阶:让图表更加美观

Seaborn进阶:数据可视化美学指南 Seaborn是基于Matplotlib的高级数据可视化库,专为统计图表设计。本文介绍了Seaborn的核心功能和进阶技巧:从基础安装配置到各种图表类型的应用,包括分布图(直方图、密度图、小提琴图)、关系图(散点图、气泡图、关系矩阵)等。通过对比Matplotlib和Seaborn的图表效果,展示了Seaborn在数据可视化中的美学优势。文章还提供了完整的Python代码示例,教读者如何创建美观、专业的统计图表,并强调了一些实用技巧,如设置中文字体、调整图表样式等。

2025-08-01 10:59:52 622

原创 19.Matplotlib可视化:让数据开口说话

Matplotlib就像是数据可视化界的"PhotoShop",它是Python中最著名的绘图库。如果数据是食材,那么Matplotlib就是厨师如果数据是音符,那么Matplotlib就是指挥家如果数据是颜料,那么Matplotlib就是画家的画笔它能把枯燥的数字变成各种各样的图表:线图、散点图、柱状图、饼图、热力图…应有尽有!# Matplotlib的核心理念: # 1. 数据 → 图表 # 2. 简单 → 美观 # 3. 静态 → 动态 # 4. 单一 → 多样# 使用十六进制颜色。

2025-08-01 10:59:32 554

原创 18.Pandas实战:数据分析师的必备神器

自定义函数应用else:print("🎯 薪资分类:")DataFrame和Series: Pandas的两大核心数据结构数据读取: 支持多种文件格式的读取数据探索: 使用describe(), info(), head()等方法了解数据数据选择: 掌握[]、loc、iloc等选择方法数据清洗: 处理缺失值、重复值和数据类型转换数据分组: 使用groupby进行分组分析数据合并: 使用merge、join等方法合并数据。

2025-07-31 20:34:54 734

原创 17.NumPy入门:数值计算的加速器 [特殊字符]

NumPy入门指南:Python数值计算加速器 NumPy是Python科学计算的核心库,提供高性能的多维数组对象和数学运算工具。本文介绍了NumPy的核心功能: 安装与基础:NumPy通过C语言实现,比原生Python列表快数十倍 数组创建:支持从列表生成、全零/全一数组、序列生成等多种创建方式 数组属性:shape、size、dtype等属性帮助了解数组结构 索引与切片:精准访问和提取数组元素 运算与广播:支持向量化运算和不同形状数组间的自动广播 常用函数:提供丰富的数学、统计和线性代数函数 实战案例:

2025-07-31 20:34:39 798

原创 16.数据库操作:让数据有个家

SQLite:轻量级嵌入式数据库,适合小型应用MySQL:功能强大的关系型数据库,适合生产环境Redis:高性能内存数据库,适合缓存和会话存储ORM:对象关系映射,简化数据库操作连接池:提高数据库连接效率事务处理:保证数据一致性。

2025-07-30 20:06:58 932

原创 15.网络编程:让程序学会上网

网络编程就像是教程序说"网络语言"。就像你学英语是为了和外国人交流一样,程序学网络编程是为了和其他程序、服务器、网站交流。HTTP请求基础:GET、POST、状态码、请求头Python网络库服务器开发:HTTP服务器、TCP服务器错误处理:超时、重试、异常处理最佳实践:异步编程、资源管理、礼貌爬虫。

2025-07-30 20:06:07 1851

原创 14.多线程与并发:让程序同时做多件事

本文介绍了Python多线程编程的基础知识和实际应用。主要内容包括: 并发与并行的概念区别:并发是任务轮流执行,并行是同时执行 Python GIL机制对多线程的影响:适合IO密集型任务,不适合CPU密集型计算 创建线程的三种方法:直接创建Thread对象、继承Thread类、使用lambda函数 多线程示例:模拟学生同时做不同科目的作业 实用项目:多线程文件下载器的实现框架 文章通过烹饪、学生作业等生动比喻,帮助理解多线程概念,并展示了Python中threading模块的基本用法。最后通过文件下载器示例

2025-07-29 12:06:44 804

原创 13.正则表达式:文本处理的瑞士军刀

在解释正则表达式之前,我们先来看看生活中的例子。在一堆照片中找出所有包含"生日"的文件名在通讯录中找出所有138开头的手机号在邮件中找出所有的网址链接这些其实都是"模式匹配"的过程,而正则表达式就是用来描述这些"模式"的一种特殊语言。# [abc] 匹配a、b、c中的任意一个print(f"'

2025-07-29 12:06:15 669

原创 12.生成器:内存友好的数据生产者

🔍 Python生成器摘要 生成器是Python中的高效内存工具,通过惰性计算按需生成数据,避免一次性加载全部内容到内存。核心特点包括: 按需生产 - 使用yield关键字暂停和恢复函数执行,每次只返回一个值 内存友好 - 相比列表,生成器几乎不占用额外存储空间(112字节vs列表的百万级字节) 适用场景 - 特别适合处理大数据集、大文件读取和流式数据处理 典型应用包括斐波那契数列生成、文件逐行读取、大数据批处理等。生成器表达式(x for x in range(n))提供了更简洁的语法实现相同的惰性计算

2025-07-28 09:38:25 687

原创 11.装饰器:给函数加个buff

Python装饰器:函数增强利器 摘要:Python装饰器是一种强大的语法特性,允许在不修改原函数代码的情况下增强函数功能。本文通过生动的游戏装备比喻介绍装饰器概念,展示多种实用装饰器的实现: 基础装饰器:包括计时装饰器、日志装饰器和重试装饰器,用于性能监控、调用记录和错误恢复 带参装饰器:如权限验证和缓存装饰器,实现更灵活的定制功能 核心机制:装饰器本质是接受函数参数并返回新函数的高阶函数,使用@functools.wraps保持原函数元信息 装饰器可类比为游戏装备系统,为函数"角色"

2025-07-28 09:38:05 294

原创 10.模块与包:站在巨人的肩膀上

Python模块与包是代码复用的重要工具,通过学习可以提升开发效率。本文介绍了模块的基本概念(即.py文件)、多种导入方式(如import、from import等),以及如何创建自定义模块和包。还探索了Python标准库中的常用模块(os、datetime、random等)和第三方库安装方法(pip)。通过模块化编程,可以实现代码组织、命名空间管理和团队协作,让开发者能"站在巨人的肩膀上"构建复杂应用。文章最后建议读者动手创建个人工具库来实践所学知识。

2025-07-27 13:06:01 833

原创 9.面向对象编程:给代码穿上西装

面向对象编程(OOP)是一种将数据和操作数据的方法封装在"对象"中的编程范式。本文通过生动比喻和代码示例,介绍了OOP的核心概念: 类与对象:类是创建对象的模板,比如包子类可以生成不同馅料的包子实例 属性与方法:属性存储对象状态(如汽车颜色),方法定义对象行为(如加速) 三大特性: 封装:隐藏内部实现细节(如宠物类的能量值) 继承:子类继承父类特性(如学生类继承人类) 多态:同一方法在不同对象中有不同实现 通过汽车、宠物、学生等生活化案例,文章展示了如何用OOP思想组织代码,使其更模块化

2025-07-27 13:05:38 595

原创 8.异常处理:优雅地处理错误

Python异常处理指南 本文系统介绍了Python中优雅处理错误的技巧与最佳实践。主要内容包括:异常的基本概念(如ValueError、TypeError等常见异常类型)、try-except基本结构、多种异常捕获方法、else/finally高级用法、主动抛出异常和自定义异常。通过生动类比(如厨师处理食材短缺)和丰富代码示例(安全计算器、文件读取等),讲解了如何使程序在遇到错误时仍能优雅运行而非崩溃。文章还提供了异常处理的最佳实践建议,帮助开发者编写更健壮的代码。

2025-07-25 22:36:07 1023

原创 7.文件操作:让程序读写文件 [特殊字符]

本文介绍了Python文件操作的基础知识与应用场景,主要内容包括: 文件操作的重要性:程序需要文件来持久化数据,避免"金鱼记忆"问题 文件打开与关闭:使用open()函数和with语句管理文件资源 多种读取方式:read()、readline()、readlines()和逐行迭代 写入技巧:覆盖写入、追加写入、格式化写入 路径管理:绝对/相对路径、os和pathlib模块的使用 CSV文件处理:基本概念和手动处理方法 文章通过生活化比喻和代码示例,帮助读者掌握文件操作的核心技能,为数据持

2025-07-25 22:35:38 906

原创 6.列表与字典:数据的收纳盒

列表就像一个可以自动编号的收纳盒,里面的每个物品都有自己的位置号码(从0开始)。# 创建一个购物清单shopping_list = ["苹果", "香蕉", "牛奶", "面包", "鸡蛋"]# 输出:['苹果', '香蕉', '牛奶', '面包', '鸡蛋']字典就像一个超级智能的文件柜,每个数据都有一个独特的标签(键),你可以通过标签快速找到对应的内容(值)。# 创建一个学生信息字典"姓名": "张三","年龄": 18,"班级": "高三(1)班",

2025-07-23 13:17:03 559

原创 5.函数:把代码打包成工具箱

咖啡机:放入咖啡豆和水 → 输出香浓咖啡 ☕洗衣机:放入脏衣服和洗衣粉 → 输出干净衣服 👕计算器:输入两个数字 → 输出计算结果 🔢def 函数名(参数1, 参数2, ...):"""函数说明文档(可选,但建议写)"""函数体return 返回值 # 可选函数的概念:代码的工具箱,实现代码重用函数定义语法def关键字,参数,返回值参数类型:必需参数、默认参数、可变参数作用域:全局变量与局部变量的区别高级技巧:Lambda函数、嵌套函数、函数作为参数实战应用:构建个人工具库。

2025-07-23 13:16:17 1215

原创 4.循环结构:让电脑做重复的事情

循环就像是给电脑安装了一个"自动重复"按钮。# 不用循环的痛苦写法 😭print("我不会再迟到了")print("我不会再迟到了")print("我不会再迟到了")print("我不会再迟到了")print("我不会再迟到了")# ... 还有995行...这样写,你的手指会先投降!# 使用循环的优雅写法 😎print("我不会再迟到了")看到了吗?1000行代码瞬间变成了2行!这就是循环的魅力。for循环:适合已知次数的重复操作while循环:适合条件驱动的重复操作range函数。

2025-07-19 12:49:22 735 2

原创 3.条件判断:让程序学会做选择

条件判断就像是程序的"大脑",它能够根据不同的情况做出不同的决定。如果天气很热 → 穿短袖如果天气很冷 → 穿棉衣如果下雨 → 带雨伞在Python中,我们使用if语句来实现条件判断。# 🎯 最佳实践示例"""检查用户权限的最佳实践"""# 1. 先检查最严格的条件return "未成年用户,拒绝访问"# 2. 使用明确的条件return "无效用户类型"# 3. 组合条件时使用括号return "允许访问"# 4. 默认情况return "权限不足"# 测试。

2025-07-19 12:48:51 1036

原创 2.变量与数据类型:给数据找个好名字

变量就像是一个有名字的盒子,我们可以往里面放东西,也可以把东西拿出来。在编程中,这个"东西"就是数据。# 创建一个变量,就像贴了标签的盒子name = "小明"age = 18# 创建一个变量,就像贴了标签的盒子 name = "小明" age = 18 height = 1.75 is_student = True print(f"姓名: {name } ") print(f"年龄: {age } ") print(f"身高: {height } 米") print(f"是否为学生: {

2025-07-15 17:24:04 392

原创 1.Python入门第一课:让电脑听懂人话的魔法

很多人第一次听到Python都会想到蟒蛇🐍,但这里的Python是一种编程语言,是人类和计算机交流的桥梁。你说中文,外国人听不懂外国人说英语,你可能听不懂但如果你们都会一种共同的语言,就能愉快交流了Python就是这样一种"共同语言",它让我们可以用接近人类自然语言的方式来"命令"计算机做事。Python是什么:一种简单易学的编程语言为什么学Python:语法简单、功能强大、社区友好如何开始:搭建环境,写出第一个程序基础语法print()函数的使用。

2025-07-15 17:23:46 716

原创 AI项目部署实战:让机器学习模型真正落地生根 ⚡(五)

经过五个阶段的深度学习,恭喜你已经完成了从AI小白到AI工程师的华丽转身!💪 你已经具备的核心竞争力🧠 拥有扎实的理论基础- 不再是调包侠,而是真正理解算法原理🛠️ 掌握完整的技术栈- 从数据处理到模型部署的全流程能力🎯 具备解决实际问题的能力- 能够将AI技术应用到具体业务场景🚀 拥有工程化思维- 不仅会训练模型,更会让模型服务于生产📈 建立了持续学习的能力- 在快速发展的AI领域保持竞争力🌈 AI行业的无限可能"技术方向": ["大模型和AGI通用人工智能",

2025-07-14 10:15:10 758

原创 推荐系统实战 - 让机器懂你⚡(四)

📱 知道你喜欢什么(比你自己还清楚)🎯 给你推荐你可能喜欢的东西💰 顺便让商家赚得盆满钵满用人话说,就是那个总在你刷抖音时推送"再看一个"的罪魁祸首。🧠算法:协同过滤、深度学习、强化学习📊工程:实时计算、A/B测试、模型部署🎯业务:用户体验、商业目标、伦理考量记住,最好的推荐系统不是技术最炫酷的,而是最懂用户需求的。就像一个好朋友,知道什么时候该推荐,什么时候该闭嘴。

2025-07-14 09:37:29 410

原创 GLEE: General Object Foundation Model for Images and Videos at Scale 论文详细解读

GLEE提出了一个统一的目标检测基础模型,通过多任务学习在单一架构中处理多种相关任务。架构创新: 基于Transformer的统一多任务架构训练策略: 有效的多任务联合训练方法性能提升: 在多个基准数据集上取得了优异的性能这项工作为构建通用的视觉理解模型提供了重要的参考,展示了多任务学习在计算机视觉领域的巨大潜力。

2025-07-13 16:21:59 379

原创 自然语言处理入门:让机器读懂人话的神奇魔法✨(三)

自然语言处理(Natural Language Processing,NLP):让计算机能够理解、分析、生成人类语言的技术。听起来还是很抽象?# 抽取式摘要:选择原文中的重要句子原文:[1000字的新闻]摘要:选择最重要的3句话# 生成式摘要:用自己的话重新组织原文:[1000字的新闻]摘要:"今日股市上涨2%,主要受益于科技股表现强劲"print("🎊 情感分析项目完成!")print("\n📈 项目成果:")print("🎊 情感分析项目完成!

2025-07-13 16:21:27 354

原创 增强拉格朗日乘子法(ALM)用于低秩矩阵精确恢复详解

在现代数据科学和机器学习中,低秩矩阵恢复是一个重要的研究领域。当我们观测到的数据矩阵受到噪声污染或存在缺失值时,如何从损坏的观测中恢复原始的低秩结构成为了一个关键问题。本文将详细介绍增强拉格朗日乘子法(Augmented Lagrange Multiplier, ALM)在低秩矩阵恢复中的应用,包括完整的数学推导和代码实现。

2025-07-12 11:12:12 370

原创 深度学习入门:让神经网络变得“深不可测“⚡(二)

深度学习(Deep Learning):使用具有多个隐藏层的神经网络来学习数据表示的机器学习方法。听起来还是很抽象?print("🎉 手写数字识别项目完成!")print("\n📊 项目成果:")print(f"✅ 模型准确率:print("🎉 手写数字识别项目完成!") print("\n📊 项目成果:") print(f"✅ 模型准确率: {

2025-07-12 11:11:13 358

原创 机器学习入门:让机器变聪明的魔法课⚡(一)

机器学习(Machine Learning):让计算机通过数据自动找规律,然后用这些规律来预测或决策的技术。听起来还是很抽象?机器学习的本质:让机器从数据中自动找规律三大学习门派:监督学习、无监督学习、强化学习学习的基本流程:数据→预处理→训练→验证→应用常见算法介绍:从简单的线性回归到复杂的神经网络动手实践:完成了第一个预测项目恭喜你!🎉 你已经正式踏入了机器学习的大门。虽然今天我们只是浅尝辄止,但你已经掌握了核心概念。就像学游泳一样,理论知识很重要,但最终还是要跳到水里才能真正学会。

2025-07-11 09:30:47 1029

原创 人工智能学习指南:从菜鸟到大神的进击之路

阶段1:知识消费者看教程、读论文、刷课程特点:被动接受,缺乏深度思考阶段2:知识实践者做项目、写代码、解决问题特点:主动实践,获得真实经验阶段3:知识创造者写博客、做分享、参与开源特点:输出倒逼输入,深度理解阶段4:知识引领者发表论文、创新算法、影响他人特点:推动技术进步,引领发展方向学习AI不是sprint(短跑),而是marathon(马拉松)。😫 代码bug调试到半夜🤯 复杂数学公式让你头疼😤 模型训练失败的挫败感🙄 新技术层出不穷的焦虑。

2025-07-11 09:30:09 701

原创 人工智能、机器学习与深度学习(个人总结)

用于个人学习,如果有啥错误欢迎指出,非常感谢啦😘在当今科技飞速发展的时代,人工智能(AI)、机器学习(ML)和深度学习(DL)这三个概念频繁出现在我们的视野中。很多人对这三者的关系感到困惑,本文将从数学理论出发,结合实际代码示例,为您详细解析这三个领域的本质和应用。人工智能(AI):概念与发展什么是人工智能?人工智能是一门致力于使机器能够执行通常需要人类智能的任务的科学。这包括:第一代AI(1950s-1980s):符号主义第二代AI(1980s-2010s):连接主义第三代AI(2010s-现在

2025-07-10 10:21:09 393

原创 Hugging Face Transformers 使用教程:从入门到实战

Hugging Face Transformers 是目前最流行的预训练模型库,提供了数千个预训练模型,支持100多种语言。它让使用最先进的NLP模型变得异常简单,只需几行代码就能实现复杂的NLP任务。text,return {# 注册自定义pipeline# 使用自定义pipelineresult = custom_pipeline("这个产品很棒!Hugging Face Transformers 是一个功能强大且易于使用的库,它大大简化了预训练模型的使用和微调过程。

2025-07-10 10:11:43 461

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除