day02-大模型开发基础-embedding

day02 大模型开发基础-Embedding

1.1 表示学习vs嵌入

表示学习(Representation Learning)和嵌入(Embedding)是密切相关的概念,它们可以被视为在不同领域

中对同一概念的不同命名或描述。

表示学习:通过学习算法自动地从原始数据中学习到一种表示形式或特征表示,该表示形式能够更好地表达

数据的重要特征和结构。表示学习的目标是将输入数据转换为具有良好表示能力的特征空间,使得在该空间

中的数据具有更好的可分性、可解释性或推理能力。

嵌入:表示学习的一种形式,通常用于将高维数据映射到低维空间中的表示形式。嵌入可以是词嵌入、图像

嵌入、图嵌入等。例如,在自然语言处理中,词嵌入将词语映射到低维向量空间,以捕捉词语之间的语义和

句法关系。在图像处理中,图像嵌入将图像映射到低维向量空间,以表示图像的视觉特征。

因此,嵌入可以被视为一种表示学习的特定形式,旨在将高维数据转换为低维向量表示。表示学习可以涉及更

广泛的概念和方法,包括嵌入在内,以实现对数据的更好理解和表达

在这里插入图片描述

1.2 表示学习: 让计算机更好地理解世界

表示学习(**Representation Learning)是指通过学习算法自动地从原始数据中学习到一种表示形式或特征表

示,该表示形式能够更好地表达数据的重要特征和结构。表示学习的目标是将输入数据转换为具有良好表示能

力的特征空间,使得在该空间中的数据具有更好的可分性、可解释性或推理能力。

• 可分性:表示学习的目标之一是将输入数据转换为具有更好可分性的特征空间。这意味着在学习到的表示

中,不同类别或不同概念之间的样本应该有明显的边界或区别。例如,在图像分类任务中,表示学习的目标

是使来自不同类别的图像在特征空间中更容易区分。这样的特征表示使得机器学习算法可以更轻松地进行分

类、聚类或其他数据分析任务。

• 可解释性:另一个表示学习的目标是生成可解释性的特征表示。这意味着学习到的特征应该具有对应于原始

数据中的可理解概念或语义的含义。例如,在自然语言处理中,词嵌入模型学习到的词向量应该能够捕捉到

词语之间的语义关系,使得相似的词在向量空间中更接近。这样的表示不仅有助于模型的解释性,也可以在

语义分析和文本生成等任务中提供更好的性能。

• **推理能力:**另一个重要的目标是使得学习到的特征表示在推理任务中更具能力。这意味着在特征空间中,我

们可以执行类似于推理、类比或关联的操作。例如,通过在词嵌入空间中执行向量运算,如 “国王” - “男人”

+ “女人” ,我们可以得到与 “皇后” 非常接近的结果。这种推理能力使得我们能够进行关联和类比推理,从而

在自然语言处理、推荐系统和知识图谱等领域中实现更高级的语义推理和理解

在这里插入图片描述

在这里插入图片描述

**1.3 嵌入(**Embedding)的价值

1. 降维: 在许多实际问题中,原始数据的维度往往非常高。例如,在自然语言处理中,如果使用One-hot编码来表示

词汇,其维度等于词汇表的大小,可能达到数十万甚至更高。通过Embedding,我们可以将这些高维数据映射到一

个低维空间,大大减少了模型的复杂度。

2. 捕捉语义信息: Embedding不仅仅是降维,更重要的是,它能够捕捉到数据的语义信息。例如,在词嵌入中,语

义上相近的词在向量空间中也会相近。这意味着Embedding可以保留并利用原始数据的一些重要信息。

3. 适应性: 与一些传统的特征提取方法相比,Embedding是通过数据驱动的方式学习的。这意味着它能够自动适应

数据的特性,而无需人工设计特征。

4. 泛化能力: 在实际问题中,我们经常需要处理一些在训练数据中没有出现过的数据。由于Embedding能够捕捉到

数据的一些内在规律,因此对于这些未见过的数据,Embedding仍然能够给出合理的表示。

5. 可解释性: 尽管Embedding是高维的,但我们可以通过一些可视化工具(如t-SNE)来观察和理解Embedding的结

构。这对于理解模型的行为,以及发现数据的一些潜在规律是非常有用的

t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种统计算法用于在低维空间(通常是2D或3D,便于可

视化)里展示高维数据的结构。其目标是保持原有高维空间中近邻点的距离关系,使得距离近的点在低维空间中仍然

距离近,而距离远的点在低维空间中仍然距离远。

1.4 Embedding分类

**嵌入(**Embedding)是表示学习的一种特定形式,旨在将高维数据映射到低维空间中的向量表示。

词嵌入(Word Embedding):在自然语言处理中,词嵌入将词语映射到低维向量空间,以捕捉词语之间的语义和句法

关系。 通过学习词嵌入,可以将词语表示为连续的向量,其中相似的词语在向量空间中彼此靠近。它在自然语言处理

任务中广泛应用,包括词语相似度计算、文本分类、命名实体识别等。词嵌入可以通过Word2Vec、GloVe 等方法进行

学习。

• **图像嵌入(**Image Embedding):在图像处理中,图像嵌入将图像映射到低维向量空间,以表示图像的视觉特征。 这

种嵌入方法通常通过使用卷积神经网络(Convolutional Neural Networks, CNN)等深度学习技术来提取图像的特征表

示。

• **图嵌入(**Graph Embedding):是用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过

学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过

DeepWalk、Node2Vec、GraphSAGE等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,

用于发现社区结构、节点相似性、信息传播等图属性。

包括嵌入在内,表示学习涉及更广泛的概念和方法,以实现对数据的更好理解和表达。

1.5 Word Embedding

Word Embedding 为自然语言处理任务提供了更好的单词表示方法,它的应用主要有:

语义表示和语义相似度:Word Embedding可以捕捉到单词之间的语义关系,使得相似含义的单词在向量空间中彼此

靠近。这使得我们可以通过计算向量之间的距离或相似度来度量单词的语义相似度。这对于词义消歧、语义搜索、语

义推理等任务非常有用。

词语关系和类比推理:Word Embedding可以捕捉到单词之间的关系,如同义词、反义词、上下位关系等。通过在向

量空间中进行向量运算,例如求解向量之间的差异或类比推理,我们可以发现词语之间的有趣关系。例如,对于词语

之间的类比关系"king - man + woman = queen" ,通过Word Embedding可以得到类似的结果。

上下文理解:Word Embedding可以帮助理解单词的上下文信息。通过学习单词在其周围上下文中的嵌入表示,我们

可以捕捉到单词的语境信息,从而帮助解决语义歧义、词语消歧和指代消解等问题。

文本分类和情感分析:Word Embedding可以提供丰富的词语特征表示,从而改善文本分类和情感分析任务的性能。

通过将文本中的词语映射为嵌入向量,并将这些向量作为输入特征,我们可以在分类器或情感分析模型中进行训练和

预测。

机器翻译和生成模型:Word Embedding对于机器翻译和生成模型也是至关重要的。通过将源语言和目标语言的单词

都映射为嵌入向量,可以提高翻译的准确性和生成模型的质量。嵌入向量可以捕捉到单词之间的语义和句法关系,帮

助模型更好地理解和生成自然语言

1.5 Word Embedding vs Language Model

Word Embedding:词嵌入通常被用来生成词的向量表示,这个过程通常是静态的,即一旦训练完成,每个词的向量表

示就确定了。词嵌入的主要目标是捕获单词或短语的语义和语法信息,并将这些信息以向量形式表示出来。词嵌入的

一个重要特性是,语义上相近的词在嵌入空间中的距离也比较近。然而,词嵌入并不能理解上下文信息,即相同的词

在不同的上下文中可能有不同的含义,但词嵌入无法区分这些含义。

Language Model语言模型则是预测词序列的概率模型,这个过程通常是动态的,会根据输入的上下文进行变化。语

言模型的主要目标是理解和生成文本。这包括对上下文的理解,词的预测,句子的生成等等。语言模型会用到词嵌

入,但同时也会对上下文进行建模,这样可以处理词在不同上下文中的不同含义。

在某种程度上,你可以将词嵌入看作是语言模型的一部分或者输入,语言模型使用词嵌入捕捉的信息,来进行更深层次的

语义理解和文本生成。当然,现在有一些更先进的模型,比如BERT,GPT等,它们生成的是上下文相关的词嵌入,即词

的嵌入会根据上下文变化,这样一定程度上弥补了传统词嵌入模型的不足

维恩图:

在这里插入图片描述

1.6 缺点

捕捉的信息,来进行更深层次的

语义理解和文本生成。当然,现在有一些更先进的模型,比如BERT,GPT等,它们生成的是上下文相关的词嵌入,即词

的嵌入会根据上下文变化,这样一定程度上弥补了传统词嵌入模型的不足

维恩图:

[外链图片转存中…(img-SwhOOOOt-1720582766144)]

1.6 缺点

在这里插入图片描述

<think>好的,用户希望作为个人用户,将DeepSeek打造成自己的全方位助手,需要全量模型,并且有一定的本地化数据库扩展和定制能力。之前已经讨论过本地部署和API调用的区别,现在用户具体想了解如何实施。 首先,用户的需求是个人使用,可能资源有限,比如硬件和预算。需要确认用户是否有足够的本地计算资源,比如GPU,或者是否需要依赖云服务。全量模型可能指的是完整的模型参数,本地部署可能需要较高的硬件配置。 接下来,本地化数据库扩展,意味着用户希望模型能够访问自己的私有数据,比如文档、笔记等。这里可能需要RAG(检索增强生成)技术,或者微调模型。但微调需要技术和数据准备,而RAG相对容易实现。 定制能力和处理习惯,用户可能需要模型按照特定的方式回答问题,或者集成到自己的工作流程中。可能需要结合外部脚本或工具,对输入输出进行处理,或者设置特定的提示模板。 用户可能没有提到但需要考虑的点包括数据隐私、成本、维护难度。作为个人用户,可能更倾向于低成本、易维护的方案,比如使用API结合本地数据库,而不是完全本地部署大模型。 需要分步骤建议,可能包括数据准备、模型选择(本地还是API)、扩展方法(RAG或微调)、集成工具等。同时,考虑到用户是个人,可能需要推荐一些开源工具或框架,降低技术门槛。 最后,提醒可能的挑战,比如硬件要求高,技术复杂度,时间成本,并给出实用建议,比如从简单开始逐步优化。</think>作为个人用户,若想将DeepSeek打造成符合自身需求的**全方位助手**,需要结合本地化数据扩展、个性化定制和技术工具链的搭建。以下是具体实现路径和关键步骤: --- ### **一、核心能力需求拆解** 根据你的描述,需要实现三个核心目标: 1. **全量模型掌控**:使用完整模型参数(非精简版),最大化模型能力 2. **本地化数据扩展**:让模型理解你的私有知识库(如个人笔记、专业资料等) 3. **个性化定制**:适配你的语言风格、任务处理习惯和特定工作流 --- ### **二、实现方案设计** #### **1. 模型部署选择** | **方案** | **优势** | **挑战** | **推荐度** | |----|----------------------------------|----------| | **本地部署全量模型** | 完全控制模型和数据隐私 | 需要高性能GPU(如RTX 3090/4090) | ★★★★☆ | | **云端API+本地增强** | 低成本起步,适合轻量级需求 | 依赖网络,数据需加密传输 | ★★★☆☆ | | **混合架构** | 平衡性能与成本(关键任务本地+通用任务API) | 架构复杂度较高 | ★★☆☆☆ | **建议**:若拥有至少24GB显存的GPU(可运行13B~34B参数模型),优先选择**本地部署**;否则从**API调用+RAG增强**起步。 --- ### **三、关键实施步骤** #### **阶段1:基础环境搭建** 1. **硬件准备** - **最低配置**:NVIDIA RTX 3090(24GB显存) + 32GB内存 - **推荐配置**:双卡RTX 4090(48GB显存) + 64GB内存(可运行70B参数模型) - **存储**:至少500GB SSD用于存储模型和知识库 2. **模型获取与部署** - 从DeepSeek官方获取全量模型(如`deepseek-llm-67b-chat`) - 使用**vLLM**或**llama.cpp**部署推理服务(优化显存和吞吐量) ```bash # 示例:使用vLLM启动API服务 python -m vllm.entrypoints.api_server --model deepseek-ai/deepseek-llm-67b-chat --tensor-parallel-size 2 ``` #### **阶段2:本地知识库扩展** 1. **数据准备** - 结构化个人数据:整理笔记/邮件/文档为Markdown或JSON格式 - 非结构化数据:用`unstructured`库解析PDF/PPT/网页内容 ```python from unstructured.partition.pdf import partition_pdf elements = partition_pdf("my_notes.pdf") ``` 2. **构建检索增强系统(RAG)** - 使用**ChromaDB**或**FAISS**建立向量数据库 - 用`text-embedding-3-small`生成知识库嵌入向量 ```python from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings vectorstore = Chroma.from_documents( documents=your_docs, embedding=OpenAIEmbeddings(model="text-embedding-3-small") ) ``` 3. **与模型集成** - 通过LangChain实现RAG管道 ```python from langchain.chains import RetrievalQA from langchain_community.llms import VLLMOpenAI llm = VLLMOpenAI( openai_api_base="http://localhost:8000/v1", model_name="deepseek-67b-chat", max_tokens=2048 ) qa_chain = RetrievalQA.from_chain_type( llm=llm, retriever=vectorstore.as_retriever(), chain_type="stuff" ) ``` #### **阶段3:个性化定制** 1. **提示词工程** - 在系统提示中定义角色和响应规则 ```python SYSTEM_PROMPT = """你是一个高度定制化的个人助手,遵循以下规则: 1. 使用简洁的技术文档风格回复 2. 优先引用用户知识库中的内容 3. 拒绝讨论与用户专业领域无关的话题""" ``` 2. **微调模型(进阶)** - 使用LoRA在私有数据上微调(需16GB+显存) ```python from peft import LoraConfig peft_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none" ) ``` 3. **习惯捕捉自动化** - 用**Loguru**记录交互历史,分析高频需求 - 通过`langsmith`监控并优化任务处理流程 --- ### **四、典型应用场景实现** #### **场景1:个人知识管理** - **输入**:`检索我2023年关于RAG的笔记,总结成思维导图` - **流程**: 1. RAG检索相关文档片段 2. 调用`graphviz`生成可视化导图 3. 自动保存到指定目录 #### **场景2:自动化工作流** - **输入**:`监控我的GitHub项目,每日用中文生成开发进度简报` - **实现**: ```python def generate_daily_report(): issues = get_github_issues() report_prompt = f"用简洁的列表总结以下问题:\n{issues}" return qa_chain.invoke(report_prompt) schedule.every().day.at("09:00").do(generate_daily_report) ``` --- ### **五、成本与效率优化建议** 1. **硬件节省方案** - 使用**GGUF量化**(如Q4_K_M)降低显存占用 ```bash ./llama.cpp/quantize deepseek-67b-f16.gguf deepseek-67b-q4_k.gguf Q4_K_M ``` 2. **计算资源复用** - 通过**Ollama**同时运行多个量化模型 3. **API替代方案** - 对实时性要求低的任务使用DeepSeek API(成本约$0.1/千token) --- ### **六、注意事项** 1. **数据安全** - 本地部署时启用磁盘加密(如LUKS) - API调用时使用`cryptography`库加密传输数据 2. **可持续维护** - 建立定期知识库更新机制(如每周同步Notion数据库) - 用`dvc`管理模型版本和训练数据 --- ### **总结** 实现个人专属的DeepSeek助手需要**分阶段实施**: 1. **基础层**:根据硬件条件选择部署方式 2. **扩展层**:通过RAG融合本地知识库 3. **定制层**:用提示词/微调适配个人需求 建议从**API+本地扩展**起步,逐步过渡到本地全量模型。关键工具链组合推荐: ``` 模型推理:vLLM/Ollama 向量数据库:ChromaDB 任务编排:LangChain + Prefect 监控优化:LangSmith + Prometheus ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值