并查集例题(食物链)C++(Acwing)

这篇文章描述了一段C++代码,用于解决一个与并查集和路径压缩相关的算法问题。代码实现了一个find函数,用于处理树状数组并在给定条件下计算满足特定条件的元素对数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码:

#include <iostream>

using namespace std;

const int N = 50010;

int n, m;
int p[N], d[N];

int find(int x)
{
    if(p[x] != x)
    {
        int t = find(p[x]);
        d[x] += d[p[x]];
        p[x] = t;
    }
    return p[x];
}

int main()
{
    scanf("%d%d", &n, &m);
    
    for(int i = 1; i <= n; i++) p[i] = i;
    
    int res = 0;
    while(m--)
    {
        int t, x, y;
        scanf("%d%d%d", &t, &x, &y);
        
        if(x > n || y > n) res++;
        else
        {
            int px = find(x), py = find(y);
            if(t == 1)
            {
                if(px == py && (d[x] - d[y]) % 3) res ++;
                else if(px != py)
                {
                    p[px] = py;
                    d[px] = d[y] - d[x];
                }
            }
            else
            {
                if(px == py && (d[x] - d[y] - 1) % 3) res++;
                else if(px != py)
                {
                    p[px] = py;
                    d[px] = d[y] + 1 - d[x];
                }
            }
        }
    }
    printf("%d", res);
    return 0;
}

### 并查集的应用场景与解法 #### LeetCode省份数量问题 在一个无向图中,省份的数量可以通过计算连通分量的数目得出。对于此类问题,并查集是一种高效的方法用于管理这些连接关系[^1]。 ```python class UnionFind: def __init__(self, size): self.root = [i for i in range(size)] def find(self, x): if x == self.root[x]: return x self.root[x] = self.find(self.root[x]) return self.root[x] def union(self, x, y): rootX = self.find(x) rootY = self.find(y) if rootX != rootY: self.root[rootY] = rootX def findCircleNum(isConnected): n = len(isConnected) uf = UnionFind(n) for i in range(n): for j in range(i + 1, n): if isConnected[i][j] == 1: uf.union(i, j) provinces = set() for i in range(n): provinces.add(uf.find(i)) return len(provinces) ``` 这段代码实现了基于路径压缩优化后的`find()`函数以及按秩合并策略下的`union()`方法来处理城市间的直接相连情况,最终统计不同根节点数量即为所求的省份总数。 #### 小岛问题中的应用 当面对岛屿计数等问题时,并查集同样能发挥重要作用。这类题目通常涉及二维网格上的0-1分布,其中'1'代表陆地而'0'则意味着水域。目标是在这样的地图上找到所有的独立岛屿——彼此之间不相邻(上下左右四个方向)的一片或多片陆地区域形成一个单独的小岛[^4]。 #### 连续序列的最大长度 虽然这不是典型的并查集应用场景,但对于某些特定条件下也可以利用该结构辅助解决问题。例如,在寻找未排序数组里最长连续子串的任务中,如果希望达到O(n)的时间复杂度,则可能需要借助哈希表配合并查集的思想来进行快速查找和更新操作[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值