自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 LangChain学习笔记06——底层代码解析之ChatPromptTemplate和PromptTemplate

LangChain框架中的PromptTemplate和ChatPromptTemplate是两种不同的提示词构建工具。PromptTemplate适用于非聊天型模型(如text-davinci-003),生成单字符串提示;而ChatPromptTemplate专为聊天模型(如gpt-3.5-turbo)设计,能构建包含多角色消息的对话结构。关键区别在于:PromptTemplate输出字符串,适合简单问答;ChatPromptTemplate输出消息对象列表,支持系统指令、用户输入等多轮对话场景

2025-08-08 10:56:29 377

原创 LangChain学习笔记05——多模态开发与工具使用

本文介绍了多模态集成开发与LCEL工具使用指南。在多模态开发部分,重点讲解了如何通过LangChain实现图文问答功能,包括图像向量化、文本嵌入和多模态融合,并提供了调用通义千问多模态API的完整代码示例。在LCEL工具部分,详细说明了工具调用、动态工具选择、组合工具流、错误处理和流式输出等核心功能,展示了如何通过管道符组合链式组件来构建复杂工作流。文章还提供了工具绑定的关键技巧和最佳实践建议,包括命名规范、类型提示和性能优化等内容。

2025-08-08 10:50:58 348

原创 LangChain学习笔记04——example selectors&LangServe基本使用

本文介绍了LangChain中的Few-shot提示和示例选择器技术,以及LangServe库的应用。主要内容包括:1. Few-shot技术通过提供少量示例帮助大模型理解任务,显著提升翻译等任务的表现;2. LangChain提供的多种示例选择器(如语义相似度选择器)能动态选取最相关示例;3. 代码演示了静态示例和动态选择器的使用方法;4. 应用场景包括智能客服、知识库问答、信息抽取等;5. LangServe库能快速将LangChain应用部署为RESTful API,支持自动文档生成和异步响应。这两项

2025-07-31 16:04:48 1028 3

原创 Pycharm点击设置无反应,代码没办法纠错,插件页面打不开解决方案

摘要:本文针对PyCharm无法打开设置和插件功能的问题提供了两种解决方案。对于旧版本(如2023版),问题通常由汉化包引起,可通过移除resources_cn.jar文件修复;对于2025版,则可能是插件冲突导致,建议检查并删除报错插件(如ml-llm插件)。两种方法都需通过文件操作临时禁用相关组件进行故障排查。操作前请注意备份文件,以便恢复必要功能。

2025-07-31 16:03:03 513

原创 LangChain学习笔记03——多步链实现与上下文记忆

本文介绍了LangChain框架中多步链的实现和上下文记忆机制。多步链部分展示了如何通过串联多个处理步骤(关键词提取、短文生成)构建复杂任务流程,使用DeepSeek API作为模型后端。上下文记忆部分解释了对话记忆的重要性,包括维持连贯性、个性化交互等功能,并演示了如何通过ConversationBufferMemory实现多轮对话记忆,保留历史对话信息。技术实现涉及记忆存储组件、提示模板中的记忆占位符以及带记忆功能的对话链构建,最后通过示例验证了系统能正确记住用户信息。

2025-07-30 11:51:43 496

原创 LangChain学习笔记02——LangChain基本使用

本文介绍了LangChain的基本使用流程,包括安装配置和首个程序的实现。首先通过pip安装LangChain和OpenAI包,然后获取DeepSeek的APIKEY并配置环境变量。代码示例演示了如何使用PromptTemplate+LLMChain生成营销文案:导入必要组件后初始化ChatOpenAI模型,设置DeepSeek的API端点等参数,创建处理链并调用生成指定主题的小红书营销短文。最后展示了以康师傅绿茶为主题生成的文案结果。

2025-07-30 11:47:36 447

原创 LangChain学习笔记01——基本概念及使用

LangChain是一个开源框架,用于开发基于大语言模型(LLM)的应用程序。它提供六大核心模块:模型交互、提示模板、数据连接、对话记忆、工作流链和智能代理,支持与GPT、Llama等模型集成。通过PromptTemplate标准化提示词,Chains串联多个步骤,Memory实现多轮对话,RetrievalQA构建知识库问答系统。其优势在于灵活组合这些模块,可应用于企业知识库、自动化数据分析等场景,相比直接调用API能实现更复杂的业务逻辑和工作流。框架还支持高级功能如RAG增强生成、多智能体协作和结构化输

2025-07-29 11:12:55 534

原创 Docker入门基础使用

Docker 是一个开源容器化平台,可将应用及其依赖打包成轻量级容器,实现跨平台运行。核心组件包括镜像、容器、Dockerfile等,常用命令涉及镜像管理、容器操作、数据卷和网络配置。Dockerfile用于构建镜像,Docker Compose可管理多容器应用。建议使用轻量基础镜像、多阶段构建优化镜像体积。Windows用户推荐Docker Desktop,注意镜像路径和性能优化。常见问题包括镜像拉取慢、端口访问失败等,可通过配置国内源、检查端口映射解决。学习资源推荐官方文档和GitHub实例。

2025-07-29 11:10:02 439

原创 大模型开发学习笔记02

通过算法和大量的数据训练,NLP模型能够
从复杂的语言输入中提取有意义的信息,从而在自动化服务、数据分析、内容生成等多个领域发挥重要作用。1.分词化:将段落的句子分割为更小的分词(token)的过程,将一个句子分解成更小的、独立的部分可以帮助计算机理解句子的各个部分,以及它们在上下文中的作用,这对于进行大量上下文的分析尤其重要。NLP是人工智能和计算机科学的一个重要分支,皆在是计算机能够理解和解释生成人类语言,它结合了计算机科学、语言学和数据科学的元素,用于解决与语言相关的各种问题。

2025-07-22 17:14:46 976

原创 大模型开发学习笔记01

检索增强生成,企业数据–向量数据库,增加大模型的能力,检索外部知识;模型回答:“基础蛋糕做法:1. 混合面粉、糖、鸡蛋…模型可能回答:“蛋糕是一种甜点,由面粉、糖和鸡蛋制成。需要两个大模型:文本向量化模型(Embeding),推理模型(文本生成模型LLM)分类:大语言模型(LLM),多模态模型(计算机视觉模型、音频 处理模型)模型回答:“基础蛋糕做法:1. 准备材料:面粉100g、糖80g…企业私有数据–LLM重新训练,增加大模型内化能力,让大模型本身就会。:教会模型遵循指令,生成有用、安全的回复。

2025-07-22 17:12:45 896

原创 FastAPI 中间件的使用

在 FastAPI 中,中间件是处理 HTTP 请求和响应的拦截器客户端 → 中间件 → 路由处理 → 中间件 → 客户端# 请求处理前逻辑app = FastAPI() @app . middleware("http") async def custom_middleware(request : Request , call_next) : # 请求处理前逻辑 start_time = time . time() print(f"Request started for {

2025-07-18 14:46:42 908

原创 FastAPI依赖注入

FastAPI 的依赖注入系统是其最强大的功能之一,它允许你声明组件(依赖项),并让 FastAPI 自动处理它们的注入。

2025-07-18 09:02:50 1108

原创 ORM分层模型设计

为了规范模型的创建与使用,减少不必要的代码冗余,维护数据的安全性,进行模型设计时,设置基本模型,输入模型,输出模型以及数据库操作模型;

2025-07-17 11:45:11 1028

原创 FastAPI字段校验(pydantic的使用)

gt=0,"gt": "年龄必须大于0","type_error": "年龄必须是整数"8. 第三方扩展库。

2025-07-17 10:55:05 859

原创 SQLAlchemy 常见问题笔记

这种设计模式遵循SQLAlchemy的"Unit of Work"模式,开发者只需操作Python对象,ORM自动处理表映射和SQL生成。:将对象加入会话的"待处理"列表。

2025-07-17 10:47:01 1060 1

原创 Flask-SQLAlchemy 与 原生SQLAlchemy 创建的 ORM 比较

项目类型推荐方式基于 Flask 的项目(即更通用、可独立运行的项目使用如果你正在构建一个更偏企业级、模块化的系统(如 FastAPI 项目、Flask 服务+后台任务共用模型等),推荐使用原生 SQLAlchemy 模式,因为它更灵活,便于测试、解耦和重用模型。

2025-07-16 10:02:00 337

原创 Tortoise ORM 与 SQLAlchemy ORM对比

特性基类直接继承Model字段定义使用Column使用Field元数据通过指定表名通过类属性或自动生成关系定义使用ForeignKey使用维度SQLAlchemy定位全能型同步/异步 ORM + SQL 工具包专注异步的轻量级 ORM(类似 Django 风格)推荐场景- 复杂查询/事务- 混合使用 SQL 与 ORM- 同步项目- 纯异步项目(FastAPI/Sanic)- 简单 CRUD 场景核心优势灵活性高、功能全面、生态成熟异步友好、API 简洁、学习成本低需要复杂查询或。

2025-07-15 17:17:11 1047

原创 教资科目二简答题

2025-07-15 09:29:25 283

原创 人工智能——机器学习算法分类

一般指通过训练多层网络结构对未知数据进行分类或回归有监督的学习方法–深度前馈网络、卷积神经网络口、循环神经网络等无监督学习方法–深度信念网、深度玻尔兹曼机,深度自编码器等。强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。

2025-07-14 09:34:39 271

原创 python中的解包操作

python中的解包操作的基本类型与运用

2025-07-11 10:24:51 452

原创 uni-app基本使用

uni-app的菜鸟级入门教学

2025-07-10 20:47:13 1163

原创 微信小程序期末复习

微信小程序期末复习

2025-07-10 19:51:05 904

原创 信息技术教资科目三简答题

内容是结合实际,有明显特征、带有启发性,并能够使学生实现知识与技能的有效迁移与应用。体现出基本性、基础性、范例性。

2025-07-10 19:34:55 1104

原创 常见4种主流ORM介绍与基本使用(Peewee ORM、Django ORM、SQLAlchemy ORM、Tortoise ORM)

对象关系映射(Object Relational Mapping,简称ORM)是一种程序设计技术,用于在面向对象编程语言和关系数据库之间进行数据转换。ORM的核心思想是通过创建一个“虚拟对象数据库”,使开发者可以使用面向对象的方式操作数据库,而不需要直接编写复杂的SQL语句。

2025-07-10 19:21:49 1415

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除