- 博客(24)
- 收藏
- 关注
原创 【论文阅读】基于多变量CNN模型的可穿戴外骨骼机器人人体运动活动识别
本文提出了一种新型多元卷积神经网络(CNN)架构,用于识别用户穿戴下肢外骨骼机器人时的运动活动。研究采集了500名健康成年人在平地、楼梯和坡道三种地形上执行五种日常运动(行走、上下楼梯、上下坡道)时的肌电信号和机器人传感器数据。通过对比实验,研究发现仅使用机器人编码器(髋关节角度/速度)和姿态信号(横滚/俯仰/偏航)的深层CNN架构表现最优,推理速度达1.14秒,F1值达96.17%,显著优于DDLMI(90.68%)、DeepConvLSTM(94.41%)和LSTM-CNN(95.57%)等对比模型。该
2025-08-14 15:27:24
714
原创 【论文阅读】基于卷积神经网络和预提取特征的肌电信号分类
【摘要】本研究提出了一种基于预提取特征的卷积神经网络(CNN)肌电信号分类方法。通过从原始EMG信号中提取时域和频域特征作为CNN输入,有效解决了肌电信号非平稳性和变异性带来的分类挑战。实验采用6个上下肢运动数据集,结果表明该方法平均准确率达98.84%,显著优于传统算法(p<0.05)。相比直接处理原始信号,特征预处理不仅提高了分类精度,还大幅降低了计算负载,使训练时间缩短至1.29秒。该模型已集成至开源平台BioPatRec,为智能假肢开发提供了高效可靠的分类方案。
2025-08-14 14:43:19
971
原创 【论文阅读】基于表面肌电信号的下肢多关节运动估计:一种深度卷积神经网络方法
本文提出一种基于多通道表面肌电信号(sEMG)和深度卷积神经网络(CNN)的下肢多关节运动估计方法。研究采集了骑行和步行任务中的7通道sEMG信号,通过带通滤波、全波整流等预处理后构建CNN模型,用于估计髋、膝、踝关节角度。实验结果表明,所提CNN模型在骑行任务中三个关节的估计均方根误差分别为3.8886°、2.8199°和3.1148°,精度显著优于传统BPNN和RBFNN模型。该研究为下肢康复外骨骼的人机交互控制提供了理论基础,未来将探索sEMG时频特征对模型的影响及非理想环境下的意图识别问题。
2025-08-14 12:19:48
415
原创 【论文阅读】从表面肌电信号中提取神经信息用于上肢假肢控制:新兴途径与挑战
摘要:表面肌电图(EMG)虽非直接神经信号,但包含运动神经元脉冲序列等神经驱动信息,可用于控制上肢假肢。商业系统主要依赖肌肉活动强度的单自由度直接控制,而学术研究已发展出多自由度同步比例控制、运动神经元脉冲解码等更先进方法。然而,学术成果因功能提升有限、鲁棒性不足等问题尚未实现商业化转化。理想肌电控制器需满足直观性、实时性、自适应性和低电极依赖性等要求,目前仍存在挑战。近年来,通过回归分析、高密度EMG分解等技术取得重要进展,为未来神经接口式假肢控制开辟了新途径。
2025-08-12 17:34:19
794
原创 【论文阅读】一种基于经典机器学习的肌电下肢意图检测方法,用于人机交互系统
本文提出了一种基于表面肌电信号(sEMG)的下肢运动意图检测方法,用于增强人机交互系统。研究采用经典机器学习模型,通过两种实现策略(受试者专属和泛化)在四个实验场景(包括静态姿势和动态行走)中评估方向意图检测性能。结果显示,使用时域特征的线性判别分析和随机森林分类器表现最佳,其中膝盖/脚部姿势识别准确率最高达91.67%,行走相关场景达75%。研究表明,该方法在机器人辅助行走、假肢控制等领域具有应用潜力,同时指出增加髋部肌肉数据或融合其他传感器数据可进一步提高准确性。
2025-08-12 15:13:51
706
原创 【笔记】训练步骤代码解析
文章摘要: 本文详细介绍了基于BiLSTM的传感器数据分类模型实现过程,主要包括四个核心模块:1)参数配置模块设定数据路径、序列长度、批次大小等超参数;2)数据加载模块采用多级进度条读取传感器数据,并进行滑动窗口处理和标准化;3)模型构建模块使用PyTorch实现双向LSTM网络,包含批量归一化和Dropout层;4)训练模块采用交叉熵损失和Adam优化器,包含学习率调度和TensorBoard日志记录。特别强调了时序数据处理中的滑动窗口实现、防止数据泄露的标准化方法,以及PyTorch特有的动态计算图特性
2025-07-11 15:03:10
851
原创 python代码实现离散haar小波变换和db4小波变换
手搓小波变换代码,python实现,haar小波和db4小波。为什么选择小波变换以及实现原理,对信号处理过程和效果。
2025-03-31 18:41:00
1042
原创 【论文阅读】Looking to Listen at the Cocktail Party:一种与说话人无关的语音分离视听模型
Looking to Listen at the Cocktail Party:A Speaker-Independent Audio-Visual Model for Speech Separation原文链接:Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech SeparationFig. 1.我们提出了一个分离和增强视频中期望发言者语音的模型。(a)输入是一个或多个人讲
2025-03-14 10:04:03
1533
1
原创 【论文阅读】LightTS:少即是多:基于轻采样的MLP结构的快速多元时间序列预测
多元时间序列预测在金融、交通、能源、医疗等领域有着广泛的应用。为了捕捉复杂的时间模式,大量的研究设计了基于RNN、GNN和Transformer的复杂神经网络结构。然而,复杂模型的计算量往往很大,因此在应用于大规模真实数据集时,其训练和推理效率面临严峻挑战。本文首先介绍了一个轻量级的深度学习体系结构LightTS,该体系结构仅基于简单的基于MLP的结构。
2025-03-12 10:46:53
1379
1
原创 【论文阅读】TSMixer:An All-MLP Architecture for Time Series Fore-casting用于时间序列预测的全mlp架构
现实世界的时间序列数据集通常是具有复杂动态的多元数据集。为了捕捉这种复杂性,高容量架构,如循环或基于注意力的顺序深度学习模型已经变得流行起来。然而,最近的研究表明,简单的单变量线性模型可以在几个常用的学术基准上优于这种深度学习模型。在本文中,我们扩展了线性模型用于时间序列预测的能力,并提出了时间序列混频器(TSMixer),这是一种通过堆叠多层感知器(mlp)设计的新架构。TSMixer基于沿时间和特征维度的混合操作来有效地提取信息。
2025-02-28 09:28:06
1528
3
原创 Yolov5训练路况分类模型(公路,土路)
目录1.数据集制作2.开始训练3.测试4.代码附录(1)爬虫代码(2)划分数据集 split_data.py。
2024-03-29 16:10:36
721
1
原创 YOLO和MobileNetV3实现四种天气分类(雨,雪,雾,晴)
修改其中路径和第四行的尺寸,将其改成自己希望裁剪的大小即可。查看爬取的图片,发现大小不一,而且其中还有可能格式受损,这对后续处理非常不利,于是需要预处理,将其转换为统一大小,并且筛选出不合格图片。输入自己需要查询的内容即可,下载完成后会在image文件夹中生成以查询内容为名的文件夹,里面保存着爬取的图像。需要修改的是里边的这一行,将其改成自己的存储地址,此处我建立了一个image文件夹,用来存储爬下来的图片。修改其中内容,将model后面改为自己存放分类模型的路径,没有的话就去先下载分类模型;
2024-03-27 14:25:50
1369
翻译 BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation(论文原文阅读)
多传感器融合对于精确可靠的自动驾驶系统至关重要。最近的方法是基于点级融合:用相机特征增强激光雷达点云。然而,相机到激光雷达的投影丢弃了相机特征的语义信息,阻碍了这些方法的有效性,特别是对于面向语义的任务(如3D场景分割)。在本文中,我们用BEVFusion打破了这种根深蒂固的惯例,BEVFusion是一种高效且通用的多任务多传感器融合框架。它将多模态特征统一到共享鸟瞰图(BEV)表示空间中,很好地保留了几何信息和语义信息。
2024-03-19 16:42:12
375
1
原创 分类模型评判指标以及混淆矩阵实现
混淆矩阵(Confusion Matrix)是一个二维表格,常用于评价分类模型的性能。在混淆矩阵中,每一列代表了预测值,每一行代表了真实值。因此,混淆矩阵中的每一个元素表示了一个样本被预测为某一类别的次数。混淆矩阵预测值1预测值0真实值1TPFN真实值0FPTN一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。
2024-03-05 11:49:13
931
1
原创 训练猫狗分类模型
数据集:采用kaggle官方Cats VS. Dogs比赛数据集。该数据集是由 Microsoft Research Asia 发布的猫狗大战数据集。该数据集包括 25000 张猫和狗的图片,其中 12500 张是猫的图片,另外 12500 张是狗的图片。每张图片的大小不一,颜色、角度、光线等也有所不同。
2024-03-05 11:46:41
757
1
原创 自动驾驶采集多视角图像处理(python实现不同文件夹下同名图片批量拼接并生成视频)
cv2.videowriter_fourcc是OpenCV中的一个函数,用于创建一个视频编码器对象。它接受四个字符作为参数,用于指定视频编码器的类型。这些字符通常是四个大写字母,例如MJPG、XVID、DIVX等。使用cv2.videowriter_fourcc可以将视频数据编码为指定类型的视频文件,以便在其他设备上播放或编辑。参数列表MPEG-4编码 .mp4 可指定结果视频的大小MPEG-4编码 .mp4 可指定结果视频的大小。
2023-12-27 11:39:30
1978
1
原创 基于目标检测评判采集行车片段质量
若干个文件夹中存放着采集到的行车图片,这些图片由行车视频按时间逐帧抽出,相当于一个行车场景。每个场景都有六个摄像头和激光雷达采集到的图片,现以对主视角的评判代表整个片段。这些场景中存在停车或是某些路段目标较少的情况,不利于后续处理,打分标准则是目标多,停车少的分数高。满分为100,低于60分的为不合格片段。将输出及格片段的文件夹名称与相应得分,以此挑选质量更好的数据。1.采用相似度对比算法来检测前后帧的相似性以判别停车或缓行片段2. 相似度对比+目标检测,根据目标数量以及重复帧数选出优秀片段。
2023-12-20 16:56:49
902
原创 BEVFusion(mit)复现Ubuntu20.04终端配置
参考文章大致上参考这篇文章,但还是遇到了很多问题首先查看cuda版本,原文要求11.3,这里使用的是11.1也没有问题nvcc -V因为服务器上有多个版本的cuda,参考此处切换创建switch-cuda.sh文件之后可以按以下指令切换创建虚拟环境并安装torch因为本人使用的是cuda11.1,所以将cu113改为cu111安装下列,记得先配置好镜像源再安装,不然会很慢。配置镜像源参考的这篇。
2023-12-12 16:04:54
4099
8
原创 感知哈希算法对大量视频抽帧,并存放到同名文件夹中
读取视频所在文件夹位置,对其中每个视频进行抽帧。遍历视频每一帧,通过对比前后帧图片之间的相似性,保存差异较大的图片,舍去相似图片。从而达到自动删除冗余帧数,得到有效帧数,并保存在与视频同名文件夹下。
2023-12-01 11:37:03
1889
1
WISDM数据集WISDM-ar-latest
2025-07-11
论文阅读LightTS:少即是多:基于轻采样的MLP结构的快速多元时间序列预测
2025-03-12
面部情绪识别数据集(包含七种情绪的人脸图像)
2025-02-20
百度爬虫python程序
2024-04-28
bevfusion可视化结果
2024-04-28
视频抽帧处理,包括相似度对比,大量视频抽帧的分段处理
2024-04-28
bevfusion结果可视化拼接展示
2024-04-28
YOLO实现自动驾驶光照模型(白天,夜晚-有光照,夜晚-无光照)
2024-04-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人