自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(58)
  • 收藏
  • 关注

原创 PyQGIS 应用终极打包与分发指南 (基于 OSGeo4W)

本文档提供了将基于PyQGIS开发的Python应用打包成绿色便携软件的完整流程。核心步骤包括:1)准备工作,确保开发环境配置正确;2)创建自动化打包脚本build.bat,该脚本会调用PyInstaller并包含所有必要的QGIS依赖文件;3)制作启动脚本"启动程序.bat"来加载QGIS运行环境;4)最终测试和分发注意事项。文档特别强调必须使用OSGeo4W独立安装版,并提供了详细的路径配置示例。通过这种方法打包的应用无需安装QGIS环境即可在其他Windows电脑上运行,实现了真正

2025-08-08 12:02:09 467

原创 day58python打卡

知识点回顾:时序建模的流程时序任务经典单变量数据集ARIMA(p,d,q)模型实战SARIMA摘要图的理解处理不平稳的2种差分n阶差分---处理趋势季节性差分---处理季节性建立一个ARIMA模型,通常遵循以下步骤:1. 数据可视化:观察原始时间序列图,判断是否存在趋势或季节性。2. 平稳性检验:- 对原始序列进行ADF检验。- 如果p值 > 0.05,说明序列非平稳,需要进行差分。3. 确定差分次数 d:- 进行一阶差分,然后再次进行ADF检验。- 如果平稳了,则 d=1。

2025-06-30 15:58:16 897

原创 day57python打卡

非平稳性(趋势) -> 使用差分 (.diff())季节性 -> 使用季节性差分 (.diff(periods=s))自相关性 -> 不消除,而是利用 ACF/PACF图 来为后续的模型选择提供线索。截尾 (Cut off):ACF或PACF图在某个延迟之后,相关系数突然变得非常小,几乎都在置信区间内。拖尾 (Tail off):相关系数随着延迟增加而缓慢、指数级地衰减,而不是突然截断。如果ACF截尾,PACF拖尾 -> 考虑 MA(q) 模型。

2025-06-28 19:09:34 690

原创 day56python打卡

在时序预测中,这种要求会更加苛刻,你设想一下,你可以制造一个随机的序列,然后让模型来学习,这注定也是不可能实现的。也就是说 数据本身要具备可预测性。一个完全随机的序列(学术上称为“白噪声”)是不可预测的。它的未来值与过去值没有任何相关性。任何模型试图从中学习规律,最终都只会是徒劳。什么叫做白噪声呢?均值为0方差恒定自相关性为0(即过去的值对未来的值没有影响)我们来生成一组随机序列# 中文显示设置。

2025-06-27 11:20:18 977

原创 day55python打卡

我们之前接触到的结构化数据,它本身不具备顺序,我们认为每个样本之间独立无关,样本之间即使调换顺序,仍然不影响模型的训练。但是日常中很多数据是存在先后关系的,而他们对应的任务是预测下一步的值,我们把这个任务称之为序列预测。举个例子,比如有过去30天的股票价格,我们希望预测第31天的价格。比如之前的单车预测,有前60天的单车需求数据,希望预测后面20天的销量。或者文本,人的语言是有顺序的,预测下一个单词是这也是序列预测任务。

2025-06-19 09:11:54 554

原创 day54python打卡

今天我们介绍inception,也就是GoogleNet传统计算机视觉的发展史从上面的链接,可以看到其实inceptionnet是在resnet之前的,那为什么我今天才说呢?因为他要引出我们后面的特征融合和特征并行处理这些思想。Inception 网络,也被称为 GoogLeNet,是 Google 团队在 2014 年提出的经典卷积神经网络架构。

2025-06-15 21:59:39 980

原创 day53python打卡

知识点回顾对抗生成网络的思想关注损失从何而来生成器判别器容器适合于按顺序运算的情况简化前向传播写法leakyReLU介绍避免relu的神经元失活现象ps;如果你学有余力对于gan的损失函数的理解,建议去找找视频看看,如果只是用,没必要学作业:对于心脏病数据集对于病人这个不平衡的样本用GAN来学习并生成病人样本观察不用GAN和用GAN的F1分数差异。

2025-06-13 22:10:03 695

原创 day52python打卡

知识点回顾随机种子内参的初始化神经网络调参指南参数的分类调参的顺序各部分参数的调整心得作业对于day'41的简单cnn看看是否可以借助调参指南进一步提高精度。之前有同学问我之前对于权重的可视化有什么意义,我们现在来引入这个概念,从权重的初始化到权重的可视化随着学习的越来越深入,有一些基础的概念我们往后就绕不过去了,还是得把基础打牢,介绍下这些概念。

2025-06-12 21:25:30 781

原创 day51python打卡

作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高浙大疏锦行

2025-06-11 18:24:20 241

原创 day50python打卡

知识点回顾resnet结构解析CBAM放置位置的思考针对预训练模型的训练策略差异化学习率三阶段微调ps今日的代码训练时长较长3080ti大概需要40min的训练时长作业:好好理解下resnet18的模型结构尝试对vgg16+cbam进行微调策略现在我们思考下,是否可以对于预训练模型增加模块来优化其效果,这里我们会遇到一个问题预训练模型的结构和权重是固定的,如果修改其中的模型结构,是否会大幅影响其性能。

2025-06-10 20:15:34 251

原创 day49python打卡

cbam注意力之前我们介绍了se通道注意力,我们说所有的模块本质上只是对特征进一步提取,今天进一步介绍cbam注意力CBAM 是一种能够集成到任何卷积神经网络架构中的注意力模块。它的核心目标是通过学习的方式,自动获取特征图在通道和空间维度上的重要性,进而对特征图进行自适应调整,增强重要特征,抑制不重要特征,提升模型的特征表达能力和性能。简单来说,它就像是给模型装上了 “智能眼镜”,让模型能够更精准地看到图像中关键的部分。

2025-06-09 22:18:13 686

原创 day48python打卡

知识点回顾:1.随机张量的生成:torch.randn函数2.卷积和池化的计算公式(可以不掌握,会自动计算的)3.pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可在继续讲解模块消融前,先补充几个之前没提的基础概念尤其需要搞懂张量的维度、以及计算后的维度,这对于你未来理解复杂的网络至关重要。

2025-06-08 20:07:58 764

原创 day46python打卡

之前复试班强化部分的transformer框架那节课已经介绍过注意力机制的由来,本质从onehot-elmo-selfattention-encoder-bert这就是一条不断提取特征的路。各有各的特点,也可以说由弱到强。其中注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。

2025-06-06 21:30:22 922

原创 day45python打卡

知识点回顾:tensorboard的发展历史和原理tensorboard的常见操作tensorboard在cifar上的实战:MLP和CNN模型效果展示如下,很适合拿去组会汇报撑页数:作业:对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。PS:tensorboard和torch版本存在一定的不兼容性,如果报错请新建环境尝试。

2025-06-06 21:23:02 677

原创 day44python打卡

模型年份提出团队关键创新点层数参数量ImageNet Top-5错误率典型应用场景预训练权重可用性LeNet-51998Yann LeCun等首个CNN架构,卷积层+池化层+全连接层,Sigmoid激活函数7~60KN/A手写数字识别(MNIST)无(历史模型)AlexNet2012Alex Krizhevsky等ReLU激活函数、Dropout、数据增强、GPU训练860M15.3%大规模图像分类PyTorch/TensorFlow官方支持VGGNet。

2025-06-04 13:45:09 984

原创 day43python打卡

【代码】day43python打卡。

2025-06-02 18:56:57 153

原创 day42python打卡

一行表达式,无需。

2025-06-01 12:42:55 703

原创 day41python打卡

知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层Flatten -> Dense (with Dropout,可选) -> Dense (Output)首先回顾下昨天的代码。

2025-05-31 21:04:26 1002

原创 day40python打卡

批量维度不变性:无论进行flatten、view还是reshape操作,第一个维度batch_size通常保持不变。动态维度指定:使用-1让PyTorch自动计算该维度的大小,但需确保其他维度的指定合理,避免形状不匹配错误。下面是所有代码的整合版本# # 设置中文字体支持# plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题# # 1. 数据预处理# transforms.ToTensor(), # 转换为张量并归一化到[0,1]

2025-05-30 11:56:16 1017

原创 day39python打卡

从这里开始我们进入到了图像数据相关的部分,也是默认你有之前复试班计算机视觉相关的知识,但是一些基础的概念我仍然会提。昨天我们介绍了minist这个经典的手写数据集,作为图像数据,相较于结构化数据(表格数据)他的特点在于他每个样本的的形状并不是(特征数,),而是(宽,高,通道数)# 先继续之前的代码from torch.utils.data import DataLoader , Dataset # DataLoader 是 PyTorch 中用于加载数据的工具。

2025-05-29 13:34:42 683

原创 day38python打卡

本文介绍了PyTorch中处理大规模数据集的两种核心组件:Dataset和DataLoader类。Dataset类负责定义数据的获取方式和预处理逻辑,需要实现__getitem__(获取单个样本)和__len__(返回样本总数)方法;DataLoader类则负责批量加载数据,支持多线程并行处理。文章以MNIST手写数字数据集为例,演示了如何使用transforms.Compose进行数据预处理,并通过Dataset和DataLoader加载数据。此外,还解释了Python特殊方法__getitem__和__

2025-05-27 00:15:00 812

原创 day37python打卡

知识点回顾:过拟合的判断:测试集和训练集同步打印指标模型的保存和加载仅保存权重保存权重和模型保存全部信息checkpoint,还包含训练状态早停策略作业:对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略我今天的笔记是用cpu训练的,请自行修改为gpu训练仍然是循序渐进,先复习之前的代码测试集准确率: 96.67%训练集的loss在下降,但是有可能出现过拟合现象:模型过度学习了训练集的信息,导致在测试集上表现不理想。

2025-05-26 10:33:03 917

原创 补day35python打卡

知识点回顾:三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化进度条功能:手动和自动写法,让打印结果更加美观推理的写法:评估模式作业:调整模型定义时的超参数,对比下效果。仍然是循序渐进,从基础的开始,逐渐加大深度。先回顾下之前的内容模型的推理 进度条功能 模型保存和加载。

2025-05-25 23:31:51 805

原创 补day34python打卡

知识点回归:CPU性能的查看:看架构代际、核心数、线程数GPU性能的查看:看显存、看级别、看架构代际GPU训练的方法:数据和模型移动到GPU device上类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)作业复习今天的内容,在巩固下代码。思考下为什么会出现这个问题。首先回顾下昨天的内容,我在训练开始和结束增加了time来查看运行时长。

2025-05-25 23:17:56 635

原创 day36python打卡

对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。仔细回顾一下神经网络到目前的内容,没跟上进度的同学补一下进度。:尝试进入nn.Module中,查看他的方法。探索性作业(随意完成)

2025-05-25 22:54:25 829

原创 day33python打卡

定义一个简单的全连接神经网络模型,包含一个输入层、一个隐藏层和一个输出层。定义层数+定义前向传播顺序class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Moduledef __init__(self): # 初始化函数super(MLP, self).__init__() # 调用父类的初始化函数# 前三行是八股文,后面的是自定义的self.fc1 = nn.Linear(4, 10) # 输入层到隐藏层。

2025-05-22 23:12:46 859

原创 day32python打卡

很多绘图工具都是调用的底层的绘图包,所以要想绘制出想要的图表,需要先了解底层绘图包的语法。此时模型已经建模完毕,这是一个经典的三分类项目,之前在基础班的项目三提到过sklearn提供的示例数据集,不了解的同学自行百度了解下该数据。我们已经掌握了相当多的机器学习和python基础知识,现在面对一个全新的官方库,看看是否可以借助官方文档的写法了解其如何使用。可以鼠标悬停在这个类上,来查看定义这个类所需要的参数,以及每个参数的格式。参考pdpbox官方文档中的其他类,绘制相应的图,任选即可。

2025-05-21 12:46:31 856

原创 day31python打卡

知识点回顾规范的文件命名规范的文件夹管理机器学习项目的拆分编码格式和类型注解作业:尝试针对之前的心脏病项目准备拆分的项目文件思考下哪些部分可以未来复用。补充介绍。

2025-05-20 16:50:09 204

原创 day30python打卡

模块(Module)本质:以.py结尾的单个文件,包含Python代码(函数、类、变量等)。作用:将代码拆分到不同文件中,避免代码冗余,方便复用和维护。包(Package)在python里,包就是库本质有层次的文件目录结构(即文件夹),用于组织多个模块和子包。核心特征:包的根目录下必须包含一个文件(可以为空),用于标识该目录是一个包。若编写一个计算圆面积的代码并保存为circle.py,这个文件就是一个模块。使用时通过导入模块,调用其中的函数(如。

2025-05-20 00:02:30 1438 1

原创 补day27python打卡

知识点回顾:装饰器的思想:进一步复用函数的装饰器写法注意内部函数的返回值作业:编写一个装饰器 logger,在函数执行前后打印日志信息(如函数名、参数、返回值)本期内容如果无法理解,可以参考如下视频教学友情提示:今天的内容难度较大,也是在我之前学习的时候卡住我很久都没理解的地方,所以任务量不多,着重理解我的示例代码即可昨天我们接触到了函数大部分的功能,然后在你日常ctrl点进某个复杂的项目,发现函数上方有一个@xxx,它就是装饰器。

2025-05-18 03:30:44 548

原创 补day26python打卡

编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。编写一个名为 calculate_average 的函数,该函数可以接收任意数量的数字作为参数(引入可变位置参数 (*args)),并返回它们的平均值。编写一个名为 print_user_info 的函数,该函数接收一个必需的参数 user_id,以及任意数量的额外用户信息(作为关键字参数)。函数的参数类型:位置参数、默认参数、不定参数。user_id 是一个必需的位置参数。

2025-05-18 03:20:16 523

原创 day29python打卡

所以你还是需要理解 装饰器本质就是一个语法糖,对类而言:@decorator 语法只是 MyClass = decorator(MyClass) 的简写,即使类已定义,仍可手动调用装饰器函数修改它。我们之前是用复用的思想来看装饰器的,换一个角度理解,当你想修改一个函数的时候,可以通过装饰器方法来修改而无需重新定义这个函数。ps:之前无论是函数还是类的装饰器,我们都发现是先有装饰器,再有类。既然函数可以复用,有了类和装饰器,那么类还能进一步封装么?类也有修饰器,他的逻辑类似:接收一个类,返回一个修改后的类。

2025-05-18 02:50:39 511

原创 day28python打卡

知识点回顾:类的定义pass占位语句类的初始化方法类的普通方法类的继承:属性的继承、方法的继承作业题目1:定义圆(Circle)类要求:包含属性:半径 radius。包含方法:calculate_area():计算圆的面积(公式:πr²)。calculate_circumference():计算圆的周长(公式:2πr)。初始化时需传入半径,默认值为 1。题目2:定义长方形(Rectangle)类包含属性:长 length、宽 width。

2025-05-17 23:26:16 839

原创 day25python打卡

知识点回顾:异常处理机制debug过程中的各类报错try-except机制try-except-else-finally机制在即将进入深度学习专题学习前,我们最后差缺补漏,把一些常见且重要的知识点给他们补上,加深对代码和流程的理解。作业:理解今日的内容即可,可以检查自己过去借助ai写的代码是否带有try-except机制,以后可以尝试采用这类写法增加代码健壮性。

2025-05-14 19:25:22 729

原创 day24python打卡

知识点回顾:元组可迭代对象os模块作业:对自己电脑的不同文件夹利用今天学到的知识操作下,理解下os路径。

2025-05-13 00:43:27 1003

原创 day23python打卡

ColumTransformer的核心# --- 定义不同列的类型和它们对应的预处理步骤 ---# 这些定义是基于原始数据 X 的列类型来确定的# 识别原始的 object 列 (对应你原代码中的 discrete_features 在预处理前)# 识别原始的非 object 列 (通常是数值列)# 有序分类特征 (对应你之前的标签编码)# 注意:OrdinalEncoder默认编码为0, 1, 2... 对应你之前的1, 2, 3...需要在模型解释时注意。

2025-05-12 15:35:31 1012

原创 day22python打卡

自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码。仔细回顾一下之前21天的内容,没跟上进度的同学补一下进度。kaggle泰坦里克号人员生还预测。

2025-05-11 13:43:44 962

原创 day21python打卡

降维是处理高维数据的核心工具,选择合适方法需权衡数据特性(线性/非线性)、任务目标(可视化/去噪/提速)和计算资源。PCA与t-SNE的对比体现了线性与非线性方法在保留数据结构上的本质差异。浙大疏锦行。

2025-05-10 22:43:43 692

原创 day20python打卡

计算特征值和特征向量:通过特征方程求解。矩阵对角化:判断矩阵是否可对角化,并求对角化矩阵。利用特征值分解求矩阵幂或函数:通过分解简化高次幂计算。证明题:如证明某些矩阵性质与特征值的关系。正交矩阵是指一个方阵 QQ,满足其转置矩阵与自身的乘积为单位矩阵,即:QTQ=IQTQ=IQTQT 是 QQ 的转置矩阵。II 是单位矩阵(对角线为 1,其余为 0)。这意味着正交矩阵的列向量(或行向量)是单位向量且两两正交。

2025-05-09 19:54:45 848

原创 day19python打卡

常见的特征筛选算法方差筛选皮尔逊相关系数筛选lasso筛选树模型重要性shap重要性递归特征消除REF作业:对心脏病数据集完成特征筛选,对比精度过去电脑性能比较差,特征数目太多计算起来很慢。同时特征中可能存在很多冗余特征干扰解释性、存在噪声特征干扰精度。所以在面对高维特征的时候常常需要引入特征降维,我们之前课程中的项目的特征也就小几十个,不太需要做降维,对于某些特征较多的数据,如基因数据、微生物数据、传感器数据等,特征较多,所以会考虑特征降维。今天这节先说一下特征筛选。

2025-05-08 13:39:23 569

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除