
机器学习
文章平均质量分 73
我不是哆啦A梦
让学习成为一种习惯!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《谁在翻译机器的疼痛?》——故障诊断的认知鸿沟与产教破壁之战!
破解油污数据、系统割裂、未知故障等难题,亟需产教融合构建“算法-经验”双引擎,让机器疼痛被听懂。原创 2025-07-27 17:14:22 · 807 阅读 · 0 评论 -
信号分解技术的范式跃迁——机械故障诊断的高维特征解耦与未来挑战
机器“生病”前的“求救声”很微弱,还藏在巨大噪音里,信号分解技术就像超级“声音分离器”,能把机器的复杂振动拆成清晰易懂的“声音片段”。未来它会结合人工智能,变得更智能,成为守护工厂安全高效的“超级医生”??原创 2025-07-06 20:36:32 · 602 阅读 · 0 评论 -
破解风电运维“百模大战”困局,机械版ChatGPT诞生?
西交大首创工业智能运维大模型!突破专用模型局限,统一处理轴承、齿轮等多部件故障,实现监测、诊断、预测"一站式"管理。小样本快速适配新场景,诊断预测任务协同增效,终结机械运维"百模大战"困局?原创 2025-07-03 17:39:13 · 965 阅读 · 0 评论 -
对变分模态分解(VMD)的理解
VMD是一种自适应、完全非递归的模态变分和信号处理的方法。原创 2024-04-22 21:45:04 · 4593 阅读 · 0 评论 -
matlab代码——最大相关性最小冗余性(MRMR)
matlab代码——最大相关性最小冗余性(MRMR)原创 2024-03-14 22:08:11 · 1074 阅读 · 0 评论 -
基于EMD功率谱特征和SVM的滚动轴承故障识别
针对滚动轴承早期故障微弱和故障识别准确率低等问题,提出了一种基于经验模态分解(EMD)和支持向量机(SVM)相结合的滚动轴承故障诊断方法。首先,利用EMD对滚动轴承的振动信号进行分解,挑选有效的IMF分量并对其进行功率谱特征计算;然后,对于获得的功率谱特征集进行最大相关性最小冗余性(MRMR)特征优选,构建最优特征集;最后,将优选后的特征集输入SVM进行滚动轴承的状态识别。通过仿真信号和实际信号的验证,所提出的方法能够有效分解滚动轴承振动信号,总的故障识别准确率能达到100%。原创 2023-11-08 21:57:06 · 1128 阅读 · 3 评论 -
浅谈语音信号处理
一些关于语音信号处理的理解。原创 2023-10-28 22:18:01 · 301 阅读 · 1 评论 -
有关opensmile的特征描述
一些有关opensmile的特征描述......原创 2023-10-19 21:31:32 · 302 阅读 · 1 评论