通俗易懂理解——最大相关性最小冗余性(MRMR)

这篇文章介绍了MRMR(最大依赖、最大相关性和最小冗余)特征选择算法,它通过计算特征与目标类别的互信息来衡量它们的相关性,旨在减少冗余并提高模型性能。作者引用了Peng等人在2005年的IEEETransactionsonPatternAnalysisandMachineIntelligence上的工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       MRMR是一种滤波式特征选择算法,能最大化特征和目标间的相关性,减少相关特征之间冗余。该算法将每个特征和输出类别作为单独变量,使用互信息 I(a,b)衡量两个变量间的相似度,该表达式为:

 

 

参考文献

[1] Peng Hanchuan , Long Fuhui, Ding Chris. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.[J]. IEEE transactions on pattern analysis and machine intelligence,2005,27(8):

内容概要:本文档详细介绍了一个基于最大相关最小冗余mRMR)和长短期记忆网络(LSTM)的时间序列预测项目。该项目旨在通过MATLAB实现高效的特征选择和深度学习模型构建,以应对高维数据冗余和长期依赖信息捕获的问题。项目涵盖了从数据预处理、特征选择、序列构造、LSTM网络建模到最后的预测与评估五个主要模块。此外,文档还包括详细的代码示例、GUI设计以及系统部署方案,确保模型可以应用于金融、气象、制造等多个领域。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和Python语言的研发人员,以及从事时间序列预测工作的数据科学家和技术爱好者。 使用场景及目标:①通过mRMR算法筛选出与预测目标最相关的特征,减少噪声和无效信息对模型的干扰,提升预测结果的准确度和稳定;②设计并训练结构合理的LSTM网络,充分挖掘时间序列中的长期依赖关系,增强模型对复杂非线时序变化的适应能力;③降低计算资源消耗,提升运行效率,满足实时或近实时预测需求;④提供通用且可扩展的预测框架,支持多领域应用,实现价值转化。 其他说明:项目不仅关注技术实现,还特别强调了模型的鲁棒和泛化能力,通过合理特征筛选和网络设计,避免过拟合和模型陷入局部最优。此外,文档还讨论了项目面临的挑战及其解决方案,如高维数据特征冗余、长期依赖信息捕获、数据不平衡与噪声干扰等。为了便于理解和应用,文档提供了丰富的代码示例和详细的GUI设计指南,帮助用户更好地掌握和应用这套预测系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不是哆啦A梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值