<一>传统的k-means算法实现流程:
输入样本集D={x1,x2,...xm},聚类的簇树k,最大迭代次数N
输出簇划分C={C1,C2,...Ck}
1) 从数据集D中随机选择k个样本作为初始的k个质心向量: {μ1,μ2,...,μk}
2)对于n=1,2,...,N
a) 将簇划分C初始化为Ct=∅t=1,2...k
b) 对于i=1,2...m,计算样本xi和各个质心向量μj(j=1,2,...k)的距离:dij=||xi−μj||22,将xi标记最小的为dij所对应的类别λi。此时更新Cλi=Cλi∪{xi}
c) 对于j=1,2,...,k,对Cj中所有的样本点重新计算新的质心μj=1|Cj|∑x∈Cjx
e) 如果所有的k个质心向量都没有发生变化,则转到步骤3)
3) 输出簇划分C={C1,C2,...Ck}
用一幅图表示的话更容易理解
############################################################
# 计算两点之间的欧氏距离并返回
############################################################
def elu_distance(a, b):
dist = np.sqrt(np.sum(np.square(np.array(a) - np.array(b))))
return dist
############################################################
# 从数