非监督分类中的k-means算法

<一>传统的k-means算法实现流程:

输入样本集D={x1,x2,...xm},聚类的簇树k,最大迭代次数N

    输出簇划分C={C1,C2,...Ck} 

    1) 从数据集D中随机选择k个样本作为初始的k个质心向量: {μ1,μ2,...,μk}
    2)对于n=1,2,...,N

      a) 将簇划分C初始化为Ct=∅t=1,2...k
      b) 对于i=1,2...m,计算样本xi和各个质心向量μj(j=1,2,...k)的距离:dij=||xi−μj||22,将xi标记最小的为dij所对应的类别λi。此时更新Cλi=Cλi∪{xi}
      c) 对于j=1,2,...,k,对Cj中所有的样本点重新计算新的质心μj=1|Cj|∑x∈Cjx
      e) 如果所有的k个质心向量都没有发生变化,则转到步骤3)

    3) 输出簇划分C={C1,C2,...Ck}

用一幅图表示的话更容易理解

############################################################
# 计算两点之间的欧氏距离并返回
############################################################

def elu_distance(a, b):
    dist = np.sqrt(np.sum(np.square(np.array(a) - np.array(b))))
    return dist



############################################################
# 从数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值