基于python的watershed algorithm

本文介绍了分水岭算法的核心步骤,包括排序与迭代过程。详细解释了如何通过升序排列和赋值迭代来确定图像分割中的分水岭区域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

watershed algorithm核心内容主要两步,<一>排序,sort升序。<二>赋值为-1然后开始迭代,把分水岭找出来。

if(keys[0]==-1):
     if(len(keys)==1):
         return -1
     elif (len(keys)==2):
         return keys[1]
     else:#Watershed
         return 0
else:
     if(len(keys)==1):
        return keys[0]
     else:#Watershed
         return 0

 

 0:分水岭 

-1:未知高度或比已经分类高的高度

keys[1]:介于以分类和更高高度之间(山腰)

 

  

    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值