基于岭回归的多项式预测模型

知识点

1.多项式回归可以解决非线性回归问题

2.多项式回归容易出现过拟合问题

3.岭回归通过在代价函数中添加L2正则项解决过拟合问题

4.Lasso回归通过在代价函数中添加L1正则项解决过拟合问题

实验目的

1.比较普通线性回归模型和多项式回归模型的区别

2.比较不同最高项下,多项式回归的区别

3.学习使用岭回归解决多项式回归过拟合问题

实验环境

1.Oracle Linux 7.4

2.Python 3


使用pandas读取数据

import pandas as pd
df = pd.read_csv('/root/experiment/datas/poly_data.csv')

查看df的维度

df.shape

查看df的前五项

df.head()


查看df的统计分布

df.describe()


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一叶知秋xj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值