知识点
1.多项式回归可以解决非线性回归问题
2.多项式回归容易出现过拟合问题
3.岭回归通过在代价函数中添加L2正则项解决过拟合问题
4.Lasso回归通过在代价函数中添加L1正则项解决过拟合问题
实验目的
1.比较普通线性回归模型和多项式回归模型的区别
2.比较不同最高项下,多项式回归的区别
3.学习使用岭回归解决多项式回归过拟合问题
实验环境
1.Oracle Linux 7.4
2.Python 3
使用pandas读取数据
import pandas as pd
df = pd.read_csv('/root/experiment/datas/poly_data.csv')
查看df的维度
df.shape
查看df的前五项
df.head()
查看df的统计分布
df.describe()