#(1)读取文件并利用 pandas 库中的 describe()函数统计 2016 年上半年全社会用电量的 基本统计量。
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
df = pd.read_excel(r'C:\Users\admin\Desktop\实验9\2016上半年上海用电量.xlsx')
df
df.describe()
df.columns
df1 = df[['1月份','2月份','3月份','4月份','5月份','6月份']]
display(df1)
df1.columns
#2)利用 pyplot 子库编程绘制上海市 2016 年上半年各产业用电量的散点图、折线图。
plt.figure(figsize=(8,6))
plt.title('上海市2016年上半年各产业用电量的散点图')
plt.xlabel('月份')
plt.ylabel('用电量')
plt.scatter(df1.columns,df1.iloc[0],marker='o')
plt.scatter(df1.columns,df1.iloc[1],marker='*')
plt.scatter(df1.columns,df1.iloc[2],marker='<')
plt.scatter(df1.columns,df1.iloc[3],marker='d')
plt.scatter(df1.columns,df1.iloc[4],marker='s')
plt.legend(df['产业'])
plt.show()
plt.figure(figsize=(8,6))
plt.title('上海市2016年上半年各产业用电量的折线图')
plt.xlabel('月份')
plt.ylabel('用电量')
plt.plot(df1.columns,df1.iloc[0],marker='o')
plt.plot(df1.columns,df1.iloc[1],marker='*')
plt.plot(df1.columns,df1.iloc[2],marker='<')
plt.plot(df1.columns,df1.iloc[3],marker='d')
plt.plot(df1.columns,df1.iloc[4],marker='s')
plt.legend(df['产业'])
plt.show()