用Matplotlib进行数据可视化

该篇文章介绍了如何使用Python的pandas库读取Excel文件,统计2016年上半年上海各月用电量的基本统计量,并利用matplotlib.pyplot创建了各产业用电量的散点图和折线图,展示了各月份的数据分布情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

#(1)读取文件并利用 pandas 库中的 describe()函数统计 2016 年上半年全社会用电量的 基本统计量。
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
df = pd.read_excel(r'C:\Users\admin\Desktop\实验9\2016上半年上海用电量.xlsx')
df

df.describe()
df.columns
df1 = df[['1月份','2月份','3月份','4月份','5月份','6月份']]
display(df1)
df1.columns

 

#2)利用 pyplot 子库编程绘制上海市 2016 年上半年各产业用电量的散点图、折线图。
plt.figure(figsize=(8,6))
plt.title('上海市2016年上半年各产业用电量的散点图')
plt.xlabel('月份')
plt.ylabel('用电量')
plt.scatter(df1.columns,df1.iloc[0],marker='o')
plt.scatter(df1.columns,df1.iloc[1],marker='*')
plt.scatter(df1.columns,df1.iloc[2],marker='<')
plt.scatter(df1.columns,df1.iloc[3],marker='d')
plt.scatter(df1.columns,df1.iloc[4],marker='s')
plt.legend(df['产业'])
plt.show()

plt.figure(figsize=(8,6))
plt.title('上海市2016年上半年各产业用电量的折线图')
plt.xlabel('月份')
plt.ylabel('用电量')
plt.plot(df1.columns,df1.iloc[0],marker='o')
plt.plot(df1.columns,df1.iloc[1],marker='*')
plt.plot(df1.columns,df1.iloc[2],marker='<')
plt.plot(df1.columns,df1.iloc[3],marker='d')
plt.plot(df1.columns,df1.iloc[4],marker='s')
plt.legend(df['产业'])
plt.show()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一叶知秋xj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值