
数据集介绍整理
文章平均质量分 90
对一些研究方向常用的数据集进行简单介绍及整理
一点.点
悟已往之不谏,知来者之可追
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于深度学习的裂缝检测与分割研究方向的 数据集介绍
深度学习在裂缝检测与分割领域取得显著进展,克服了传统方法在复杂环境中的局限性。主流技术包括改进的U-Net、Transformer架构及多尺度建模,重点关注小目标检测和数据不平衡问题。常用数据集如DeepCrack、CrackTree提供精细标注,而SDNET2018适用于分类任务。未来趋势涵盖合成数据生成、3D裂缝分析和跨域泛化研究。当前最优模型在部分测试集上已达94.2% IoU精度,成为智能巡检的关键技术支撑。原创 2025-06-03 08:58:56 · 1228 阅读 · 0 评论 -
图像分类研究方向数据集介绍
图像分类是计算机视觉的核心任务,旨在为图像分配语义标签。随着深度学习的进步,研究在多个方向深化:从传统特征提取方法到深度学习模型架构(如CNN、Transformer),再到小样本学习、细粒度分类、多标签分类等。研究还涉及对抗鲁棒性、无监督/自监督学习、模型压缩与加速、跨域与迁移学习等。常用数据集如MNIST、CIFAR、ImageNet等,为模型训练和评估提供了基础。未来趋势将聚焦于少样本学习、跨域泛化及模型轻量化,以满足实际应用需求。原创 2025-05-09 10:32:36 · 768 阅读 · 0 评论 -
目标检测(Object Detection)研究方向常用数据集简单介绍
目标检测是计算机视觉的核心任务之一,旨在从图像或视频中定位并识别出所有感兴趣的物体,输出其类别和位置(通常以边界框表示)。其研究主要围绕精度与速度的平衡展开,并逐步向多模态、轻量化、开放集等方向扩展。Two-Stage检测算法(如R-CNN系列):首先生成候选区域(Region Proposal),再对候选区域分类和位置修正。这类算法精度高但速度较慢,典型代表包括Fast R-CNN、Faster R-CNN和Mask R-CNN159。One-Stage检测算法。原创 2025-05-06 09:35:46 · 1174 阅读 · 0 评论 -
深度估计研究方向常用数据集介绍
深度估计(Depth Estimation)是计算机视觉中的核心任务之一,旨在从单目、双目或多视角图像中恢复场景的三维几何信息。单目深度估计:仅用单张图像预测深度(无需多视角或传感器)。立体匹配(双目深度估计):利用双目图像视差恢复深度。多视角深度估计:基于多个视角的图像或视频序列(如SLAM、MVS)。传感器融合:结合RGB图像与激光雷达(LiDAR)、ToF相机等传感器数据。应用场景:自动驾驶、机器人导航、增强现实(AR/VR)、3D重建等。原创 2025-04-30 08:37:19 · 929 阅读 · 0 评论 -
人体姿态估计常用数据集介绍
人体姿态估计(Human Pose Estimation)是计算机视觉领域的核心任务之一,旨在从图像或视频中检测并定位人体的关键解剖部位(如关节、头部、四肢等),构建人体骨架模型。2D姿态估计:在图像平面上预测人体关键点的二维坐标。3D姿态估计:进一步恢复关键点的三维空间位置,或估计关节角度。多人姿态估计:在复杂场景中同时检测多人的姿态,解决遮挡、密集人群等问题。应用场景广泛,包括动作识别、人机交互、运动分析、虚拟现实、医疗康复等。近年来,随着深度学习技术的进步,姿态估计在精度和实时性上均取得显著突破。原创 2025-04-29 15:07:26 · 1199 阅读 · 0 评论 -
自动驾驶(ADAS)领域常用数据集介绍
由德国卡尔斯鲁厄理工学院与丰田研究院联合创建,是自动驾驶领域最经典的评测基准,涵盖立体视觉、光流、3D检测等任务。包含市区、乡村和高速公路场景的真实数据,标注对象包括车辆、行人等,支持多传感器数据(摄像头、激光雷达、GPS等)。原创 2025-04-27 14:26:09 · 1458 阅读 · 0 评论