[_附背诵模板_]dp动态规划

动态规划没有固定模板,类似于贪心,是一种【思想】。是通过刷题练习的,在题目中运用该思想。但是也可以有章可循的!但是套路是可以总结的,一步一步的“  骨架  ”是可以提前总结搭建好的,这个【思考方式】也可以当作是一个【做题思考步骤】而不是模板。

背包问题主要可以分为如下几种情况:

01背包问题

每个物品最多用一次

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1;i <= n;i ++) cin >> v[i] >> w[i];//输入物品的体积、价值
    
    for(int i = 1;i <= n;i ++)//i表示物品
        for(int j = 0;j <= m;j ++)//j表示体积
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    
    cout << f[n][m] << endl;//输出最优价值
    
    return 0;
}

优化成一维的代码:

滚动数组做法

.....................................................此处不太理解,需要再巩固!。。。。。。。。。。。。。

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];

int main()
{
	cin >> n >> m;

	for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];

	for (int i = 1; i <= n; i++)
		for (int j = m; j >= v[i]; j--)
			f[j] = max(f[j], f[j - v[i]] + w[i]);

	cout << f[m] << endl;

	return 0;
}

完全背包问题

每件物品有无限多个

 【三重循环】的超时代码

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1;i <= n;i ++) cin >> v[i] >> w[i];
    
    for(int i = 1;i <= n;i ++)
        for(int j = 0;j <= m;j ++)
            for(int k = 0; k * v[i] <= j;k ++)
                f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k);
    
    cout << f[n][m] << endl;
    
    return 0;
}

优化成两重循环

 优化成两重循环的AC代码  

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1;i <= n;i ++) cin >> v[i] >> w[i];
    
    for(int i = 1;i <= n;i ++)
        for(int j = 0;j <= m;j ++)
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
        }
    
    cout << f[n][m] << endl;
    
    return 0;
}

多重背包问题I

 只能选s[i]类  ---  可以类比于朴素版本的完全背包问题

该题数据范围暴力不会超时

暴力解法:

三重暴力循环,时间复杂度是O(N^3)。由于给定数据N的范围是小于100的,所以N^3是小于10^6的,不会超时

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N],s[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1;i <= n;i ++) cin >> v[i] >> w[i] >> s[i];
    
    for(int i = 1;i <= n;i ++)
        for(int j = 0;j <= m;j ++)
            for(int k = 0;k <= s[i] && k * v[i] <= j;k ++)
                f[i][j] = max(f[i][j],f[i - 1][j - v[i] * k] + w[i] * k);
    
    cout << f[n][m] << endl;
    
    return 0;
}

多重背包问题II

该题数据范围暴力会超时

那么我们是否可以用完全背包的优化方式来优化状态转移方程呢? ————  我们可以试一下

通过观察方程,我们发现,f[i][j-v]比f[i][j]多出来一项f[i-1][j-(s+1)v]+sw。和完全背包问题是不一样的(没多出来项数)

然而,我们求最大值,不能【知道用整个式子的最大值,求不出上最后一项的式子的最大值

二进制优化方式【多重背包问题经典优化】

该题的时间复杂度优化优化:

 

 

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 25000, M = 2010;

int n, m;
int v[N], w[N];
int f[M];

int main()
{
    cin >> n >> m;//n是件物品,m是背包容积
    
    int cnt = 0;//分组的组别
    for(int i = 1;i <= n;i ++)
    {
        int a, b, s;//该物品的体积a、价值b、数量s
        cin >> a >> b >> s;
        int k = 1;//用于把物品数量的拆分标记
        while(k <= s)
        {
            cnt ++;//组别增加
            v[cnt] = a * k;//一个该物品体积是a,k个该物品体积是a * k
            w[cnt] = b * k;//一个该物品价值是b,k个该物品价值是b * k
            s -= k;
            k *= 2;
        }
        //补上没凑够的s
        if(s > 0)
        {
            cnt ++;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
        
        n = cnt;
    }
    
    //之后做一遍01背包问题
    for(int i = 1;i <= n;i ++)
        for(int j = m; j >= v[i]; j --)
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        
    cout << f[m] << endl;
    
    return 0;
}

分组背包问题

同组的众多物品中,只能选一个物品

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 110;

int n, m;
int v[N][N], w[N][N], s[N];
int f[N];

int main()
{
    cin >> n >> m;//n是物品组数,m是背包容量
    
    for(int i = 1;i <= n;i ++)
    {
        cin >> s[i];//第i物品组的物品数量
        for(int j = 0;j < s[i]; j ++)
            cin >> v[i][j] >> w[i][j];//第i物品组中第j个物品的体积、价值
    }
    
    for(int i = 1;i <= n; i ++)
        for(int j = m;j >= 0; j --)
            for(int k = 0;k < s[i]; k ++)//枚举每一种选择
                if(v[i][k] <= j)//物品体积小于j是前提
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
    
    cout << f[m] << endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值