动态规划没有固定模板,类似于贪心,是一种【思想】。是通过刷题练习的,在题目中运用该思想。但是也可以有章可循的!但是套路是可以总结的,一步一步的“ 骨架 ”是可以提前总结搭建好的,这个【思考方式】也可以当作是一个【做题思考步骤】而不是模板。
背包问题主要可以分为如下几种情况:
01背包问题
每个物品最多用一次
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main()
{
cin >> n >> m;
for(int i = 1;i <= n;i ++) cin >> v[i] >> w[i];//输入物品的体积、价值
for(int i = 1;i <= n;i ++)//i表示物品
for(int j = 0;j <= m;j ++)//j表示体积
{
f[i][j] = f[i - 1][j];
if(j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
cout << f[n][m] << endl;//输出最优价值
return 0;
}
优化成一维的代码:
滚动数组做法
.....................................................此处不太理解,需要再巩固!。。。。。。。。。。。。。
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i++)
for (int j = m; j >= v[i]; j--)
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
完全背包问题
每件物品有无限多个
【三重循环】的超时代码
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main()
{
cin >> n >> m;
for(int i = 1;i <= n;i ++) cin >> v[i] >> w[i];
for(int i = 1;i <= n;i ++)
for(int j = 0;j <= m;j ++)
for(int k = 0; k * v[i] <= j;k ++)
f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k);
cout << f[n][m] << endl;
return 0;
}
优化成两重循环
优化成两重循环的AC代码
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main()
{
cin >> n >> m;
for(int i = 1;i <= n;i ++) cin >> v[i] >> w[i];
for(int i = 1;i <= n;i ++)
for(int j = 0;j <= m;j ++)
{
f[i][j] = f[i - 1][j];
if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
}
cout << f[n][m] << endl;
return 0;
}
多重背包问题I
只能选s[i]类 --- 可以类比于朴素版本的完全背包问题
【该题数据范围暴力不会超时】
暴力解法:
三重暴力循环,时间复杂度是O(N^3)。由于给定数据N的范围是小于100的,所以N^3是小于10^6的,不会超时
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N],s[N];
int f[N][N];
int main()
{
cin >> n >> m;
for(int i = 1;i <= n;i ++) cin >> v[i] >> w[i] >> s[i];
for(int i = 1;i <= n;i ++)
for(int j = 0;j <= m;j ++)
for(int k = 0;k <= s[i] && k * v[i] <= j;k ++)
f[i][j] = max(f[i][j],f[i - 1][j - v[i] * k] + w[i] * k);
cout << f[n][m] << endl;
return 0;
}
多重背包问题II
【该题数据范围暴力会超时】
那么我们是否可以用完全背包的优化方式来优化状态转移方程呢? ———— 我们可以试一下
通过观察方程,我们发现,f[i][j-v]比f[i][j]多出来一项f[i-1][j-(s+1)v]+sw。和完全背包问题是不一样的(没多出来项数)
然而,我们求最大值,不能【知道用整个式子的最大值,求不出上最后一项的式子的最大值】
二进制优化方式【多重背包问题经典优化】
该题的时间复杂度优化优化:
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 25000, M = 2010;
int n, m;
int v[N], w[N];
int f[M];
int main()
{
cin >> n >> m;//n是件物品,m是背包容积
int cnt = 0;//分组的组别
for(int i = 1;i <= n;i ++)
{
int a, b, s;//该物品的体积a、价值b、数量s
cin >> a >> b >> s;
int k = 1;//用于把物品数量的拆分标记
while(k <= s)
{
cnt ++;//组别增加
v[cnt] = a * k;//一个该物品体积是a,k个该物品体积是a * k
w[cnt] = b * k;//一个该物品价值是b,k个该物品价值是b * k
s -= k;
k *= 2;
}
//补上没凑够的s
if(s > 0)
{
cnt ++;
v[cnt] = a * s;
w[cnt] = b * s;
}
n = cnt;
}
//之后做一遍01背包问题
for(int i = 1;i <= n;i ++)
for(int j = m; j >= v[i]; j --)
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;
return 0;
}
分组背包问题
同组的众多物品中,只能选一个物品
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n, m;
int v[N][N], w[N][N], s[N];
int f[N];
int main()
{
cin >> n >> m;//n是物品组数,m是背包容量
for(int i = 1;i <= n;i ++)
{
cin >> s[i];//第i物品组的物品数量
for(int j = 0;j < s[i]; j ++)
cin >> v[i][j] >> w[i][j];//第i物品组中第j个物品的体积、价值
}
for(int i = 1;i <= n; i ++)
for(int j = m;j >= 0; j --)
for(int k = 0;k < s[i]; k ++)//枚举每一种选择
if(v[i][k] <= j)//物品体积小于j是前提
f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
cout << f[m] << endl;
return 0;
}