
pytorch
文章平均质量分 58
司南锤
记录个人学习历程,与大家一起交流成长~
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LLM常用数据集搜集渠道
【代码】LLM常用数据集搜集渠道。原创 2025-03-13 19:10:37 · 477 阅读 · 0 评论 -
pytorch常用参数初始化
修正ReLU族的负区间影响,适用于ReLU/LeakyReLU。:保持输入输出方差一致,适用于tanh/sigmoid激活。:保持输入输出空间的正交性,适用于RNN/LSTM。:权重矩阵满足 ( W^T W = I ):限制采样范围在±2std内,避免极端值。:权重初始化为0(不推荐用于隐藏层):导致所有神经元对称更新,失去多样性。:随机将部分权重设为0,打破对称性。:将最后一个BN层的权重初始化为0。Kaiming初始化。原创 2025-03-08 12:49:38 · 1072 阅读 · 0 评论 -
Pytorch参数初始化设置
在PyTorch中,如果不对网络参数进行显式初始化,各层会使用其默认的初始化方法。原创 2025-03-08 12:35:01 · 1180 阅读 · 0 评论 -
观察评测模型的性能时为什么需要关闭dropout及dropout一般设置
是一种广泛使用的正则化技术,用于防止神经网络过拟合。它的核心思想是在训练过程中随机“丢弃”一部分神经元,从而减少神经元之间的共适应性,增强模型的泛化能力。原创 2025-02-27 21:21:50 · 1260 阅读 · 0 评论 -
pytorch中nn.Conv2d详解及参数设置原则
对于简单任务,可以选择较小的输出通道数和标准的 3x3 卷积核。对于复杂任务,可以使用较大的输出通道数和堆叠多个卷积层。使用步幅和填充控制特征图的尺寸变化,保持适当的空间信息。在资源受限的环境中,可以选择分组卷积和膨胀卷积来减少计算量。原创 2025-01-03 08:46:15 · 2302 阅读 · 0 评论 -
深度学习自动选择运行GPU或者CPU
【代码】深度学习自动选择运行GPU或者CPU。原创 2024-11-04 15:19:25 · 434 阅读 · 0 评论 -
PyTorch库自定义调用Gabor filters
【代码】PyTorch库自定义调用Gabor filters。原创 2024-10-28 13:23:25 · 188 阅读 · 0 评论 -
Pytorch迁移学习调用预训练模型
【代码】Pytorch迁移学习调用预训练模型。原创 2024-10-22 20:35:23 · 191 阅读 · 0 评论 -
Pytorch将训练数据维度打平为(batch, *)两项代码
【代码】Pytorch将训练数据维度打平为(batch, *)两项代码。原创 2024-10-22 20:31:16 · 136 阅读 · 0 评论 -
Pytorch深度学习框架通用模板
在data中修改数据, 在model中更改为其他模型就可以直接跑啦!原创 2024-10-20 21:19:27 · 304 阅读 · 0 评论 -
在什么情况下使用 torch.autograd.grad()更合适?
例如,如果有一个向量值函数,并且想要得到每个元素相对于输入的梯度,可以使用。可以精确指定哪些输出需要计算梯度,以及如何计算这些梯度。:如果需要在计算图的构建过程中动态地插入操作,或者在构建计算图时需要更细粒度的控制,都是用来计算梯度的工具,但它们在某些特定情况下有不同的适用性。:在一些高级用例中,比如当需要计算损失相对于模型中间层的梯度时,如果不希望梯度累加,而是希望每次计算都是独立的,可以更容易地实现这一点,因为它可以创建梯度的梯度计算图,而。:当需要计算高阶梯度(即梯度的梯度)时,可以提供这种灵活性。原创 2024-10-17 16:34:25 · 336 阅读 · 0 评论 -
torch.autograd.grad() 和 .backward() 用法区别
【代码】torch.autograd.grad() 和 .backward() 用法区别。原创 2024-10-17 16:32:27 · 474 阅读 · 0 评论 -
实现对类别的one-hot编码
这里,它在out张量的第1维(即列)上进行操作,使用idx张量作为索引,将所有索引位置的值设置为1。label是一个包含类别标签的张量(Tensor),depth是一个整数,表示one-hot编码向量的长度,默认值为10。这行代码首先将label张量转换为LongTensor类型(通常用于存储整数索引),然后使用view(-1, 1)将其重塑为一个二维张量,其中每个元素都是一个单独的行向量。这行代码创建一个新的张量out,其形状由label张量的第一个维度(即样本数量)和depth参数决定。原创 2024-10-16 15:21:22 · 261 阅读 · 0 评论 -
异构卷积层介绍
异构卷积层通过引入多尺度、多形状的卷积核,增强了卷积神经网络的特征提取能力,使其能够更好地适应复杂的数据结构和模式。然而,这种灵活性也带来了更高的计算复杂度,需要在设计时进行权衡。我们将定义一个包含不同尺寸卷积核的异构卷积层。# 定义不同尺寸的卷积核# 分别使用不同尺寸的卷积核进行卷积操作# 将结果拼接在一起return out我们将使用异构卷积层来构建一个简单的卷积神经网络模型。# 异构卷积层# 全连接层# 异构卷积层# 展平# 全连接层return x。原创 2024-09-16 09:51:52 · 1486 阅读 · 0 评论 -
组卷积(Groupwise Convolution)和逐点卷积(Pointwise Convolution)的区别联系
组卷积是一种将输入特征图分成多个组(groups),然后在每个组内进行卷积操作的方法。每个组的卷积核只与对应组的输入特征图进行卷积,不同组之间不进行信息交换。原创 2024-09-16 09:47:21 · 1219 阅读 · 0 评论 -
nn.Sequential()和nn.ModuleList()有什么联系
适合简单的顺序结构,模块按顺序执行。: 适合需要动态操作的复杂结构,模块不按顺序执行,可以动态添加或删除。原创 2024-09-16 09:42:14 · 467 阅读 · 0 评论 -
pytorch安装成功在terminal中能正常运行,但jupyter lab中显示no module named torch的解决方案
如果你想要使用一个新的内核(例如,一个特定的 Python 版本或不同的编程语言),你需要先安装该内核。选择新的内核后,Notebook 会自动切换到新的内核。你可以在 Notebook 的右上角看到新的内核名称。在 Notebook 的右上角,你会看到当前使用的内核名称。安装完成后,新的内核会出现在 Jupyter Notebook 的内核列表中。点击内核名称后,会弹出一个菜单,显示所有可用的内核。选择你想要切换到的内核。你可以打开一个现有的 Notebook 或创建一个新的 Notebook。原创 2024-09-11 22:28:11 · 629 阅读 · 0 评论 -
深度学习避坑好文汇总
安装Pytorch如何选择CUDA的版本,看这一篇就够了原创 2024-09-11 21:06:14 · 437 阅读 · 0 评论 -
基于pytorch的RNN网络
LSTM层:输入特征数为input_size,隐藏层特征数为hidden_size,层数为num_layers# 全连接层:输入特征数为hidden_size,输出特征数为num_classes# 初始化隐藏状态和细胞状态# 前向传播LSTM# 取最后一个时间步的输出return out# 示例数据:假设输入数据为(batch_size, seq_length, input_size),目标为(batch_size)原创 2024-09-08 14:34:05 · 892 阅读 · 0 评论 -
基于Pytorch的CNN的简单框架
卷积层1:输入通道数为1(灰度图像),输出通道数为32,卷积核大小为3x3# 卷积层2:输入通道数为32,输出通道数为64,卷积核大小为3x3# 最大池化层:池化窗口大小为2x2# 全连接层1:输入特征数为64*7*7(假设输入图像为28x28,经过两次池化后为7x7),输出特征数为128# 全连接层2:输入特征数为128,输出特征数为10(假设有10个类别)# Dropout层:防止过拟合# 第一层卷积 + ReLU激活函数 + 池化# 第二层卷积 + ReLU激活函数 + 池化。原创 2024-09-08 14:31:01 · 679 阅读 · 0 评论 -
调用yolov3模型进行目标检测
解析模型的输出,得到检测框、类别和置信度,并绘制检测结果。假设已经有一个预训练的YOLOv3模型权重文件。使用模型对图片进行推理,得到检测结果。读取图片并将其转换为模型所需的格式。原创 2024-08-14 13:20:54 · 576 阅读 · 0 评论 -
cuda的发展历史和作用
CUDA(Compute Unified Device Architecture)是由NVIDIA公司开发的一种并行计算平台和编程模型。允许开发者使用NVIDIA的GPU(图形处理单元)进行通用计算,而不仅仅是图形渲染。原创 2024-08-14 09:42:17 · 1994 阅读 · 0 评论 -
详细介绍pytorch重要的API
Tensor 是 PyTorch 中最基本的数据结构,提供了多种创建和操作张量的函数。Autograd 提供了自动求导功能,可以跟踪 Tensor 上的操作并计算梯度。损失函数用于衡量模型预测值与真实值之间的差异,提供了多种损失函数。是构建神经网络的基础类,提供了定义网络层和前向传播的方法。提供了 GPU 计算的支持,包括设备管理、内存管理等。提供了一些常用的函数式操作,如激活函数、损失函数等。提供了常用的数据集、模型架构和图像转换工具。提供了数据加载和预处理的工具,包括。原创 2024-08-14 09:38:58 · 1019 阅读 · 0 评论 -
详细介绍Pytorch基于GPU训练的一般套路(device)
检查 GPU 可用性并选择设备。将模型移动到 GPU。在训练和评估循环中,将数据移动到 GPU。在保存和加载模型时,确保模型参数在 GPU 上。在 PyTorch 中,使用 GPU 进行模型训练可以显著提高训练速度,尤其是在处理大规模数据集和复杂模型时。以下是基于 GPU 训练的一般套路,包括数据准备、模型定义、损失函数和优化器的选择、训练循环、评估和测试,以及模型保存和加载。定义一个神经网络模型,通常继承自,并在__init__方法中定义网络层,在forward方法中定义前向传播过程。原创 2024-08-14 09:34:07 · 1590 阅读 · 0 评论 -
Pytorch常用训练套路框架(CPU)
定义一个神经网络模型,通常继承自,并在__init__方法中定义网络层,在forward方法中定义前向传播过程。return x# 定义损失函数# 定义优化器。原创 2024-08-14 09:24:24 · 778 阅读 · 0 评论 -
详细介绍Pytorch中torchvision的相关使用
如果需要使用自定义数据集,可以继承类,并实现__len__和方法。import os# 使用自定义数据集。原创 2024-08-14 09:16:34 · 549 阅读 · 0 评论 -
Pytorch中transform的应用
如果内置的转换操作不能满足需求,还可以自定义转换操作。自定义转换操作需要继承类,并实现__call__方法。# 自定义转换操作return img])原创 2024-08-14 09:12:50 · 525 阅读 · 0 评论 -
yolo中的iou是什么意思
IoU 的值范围在 0 到 1 之间,值越接近 1,表示两个边界框的重叠程度越高。在目标检测任务中,IoU 常用于判断预测框(predicted bounding box)和真实框(ground truth bounding box)之间的匹配程度。具体来说,IoU 是通过计算两个边界框的交集面积与的并集面积之比来得到的。在YOLO算法中,IoU 用于非极大值抑制(Non-Maximum Suppression, NMS)过程,以去除冗余的预测框,保留最佳的预测结果。原创 2024-08-12 17:07:20 · 1730 阅读 · 0 评论 -
基于Pytorch深度学习图像处理基础流程框架(以ResNetGenerator为例)
transforms.Resize((262, 461)), # 调整图像大小transforms.ToTensor(), # 转换为张量transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 归一化])原创 2024-08-11 10:15:28 · 620 阅读 · 0 评论