
深度学习
文章平均质量分 91
Wilber的技术分享
计算机硕士在读,主要研究方向关于LLMs+Graph。Interested in ML、DL、Data Mining、NLP、LLMs,Aspired to be an algorithm engineer.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【机器学习实战笔记 16】集成学习:LightGBM算法
主要讲解LightGBM算法的基本原理、数学推导及证明、sklearn的和原生API实现以及参数讲解。原创 2025-07-12 23:08:11 · 421 阅读 · 0 评论 -
【机器学习实战笔记 15】集成学习:XGBoost算法(二) 数学原理及推导过程
主要讲解XGBoost的数学原理以及证明过程。原创 2025-07-07 09:00:00 · 1616 阅读 · 0 评论 -
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
主要讲解XGBoost的基本原理以及快速的实现方法。原创 2025-07-05 18:56:15 · 1109 阅读 · 0 评论 -
【机器学习实战笔记 13】集成学习:GBDT算法
主要讲解梯度提升树GBDT的基本思想、参数空间、参数优化、数学求解流程。原创 2025-06-29 16:01:44 · 672 阅读 · 0 评论 -
【机器学习实战笔记 12】集成学习:AdaBoost算法
讲解Boosting算法思想、AdaBoost算法思想、参数讲解、原理实现以及sklearn库实现的基本过程。原创 2025-06-20 21:35:09 · 1175 阅读 · 0 评论 -
【机器学习实战笔记 10】超参数优化(一):网格优化方法
主要介绍超参数优化方法,包括网格搜索、随机搜索、对半搜索(Halving搜索)、贝叶斯优化算法等。原创 2025-06-16 16:04:40 · 1093 阅读 · 0 评论 -
【机器学习实战笔记 7】决策树模型(二):CART分类树、ID3、C4.5决策树
细介绍关于ID3和C4.5这两种决策树模型的建模基本思路和原理。ID3和C4.5的基本建模流程和CART树是类似的,也是根据纯度评估指标选取最佳的数据集划分方式,只是不过ID3和C4.5是以信息熵为评估指标,而数据集的离散特征划分方式也是一次展开一列,而不是寻找切点进行切分。原创 2025-06-09 14:49:18 · 836 阅读 · 0 评论 -
【机器学习实战笔记 9】Bagging与随机森林(二):Bagging方法6大面试热点问题
Bagging方法6大面试热点问题。原创 2025-06-10 14:59:50 · 972 阅读 · 0 评论 -
【机器学习实战笔记 8】Bagging与随机森林(一):从原理到实践讲解
集成学习(Ensemble learning)是机器学习中最先进、最有效、最具研究价值的领域之一,这类方法会训练多个弱评估器(base estimators)、并将它们输出的结果以某种方式结合起来解决一个问题。原创 2025-06-10 12:48:31 · 802 阅读 · 0 评论 -
【机器学习实战笔记 6】决策树模型(一):CART分类树、ID3、C4.5决策树
本文主要包括决策树模型:CART分类树、ID3、C4.5决策树。从原理到建模的流程。原创 2025-06-08 12:58:15 · 811 阅读 · 0 评论 -
【机器学习实战笔记 5】聚类模型:K-Means、Mini Batch K-Means与DBSCAN
本文介绍了三种常用的无监督聚类算法:K-Means、Mini Batch K-Means和DBSCAN。K-Means通过迭代计算质心对数据进行分群,目标是使组内误差平方和最小化。Mini Batch K-Means是K-Means的优化版本,适用于大数据集。DBSCAN则基于密度进行聚类,无需预先指定簇数。文章详细阐述了K-Means的原理、计算步骤和数学意义,包括质心计算、迭代停止条件等。聚类算法广泛应用于客户分群、特征工程等领域,相比有监督学习更简单但应用场景有限。原创 2025-05-26 14:55:02 · 617 阅读 · 0 评论 -
【机器学习实战笔记 4】Scikit-Learn使用与进阶二
主要讲解逻辑回归的完整构建示例、网格搜索方法、多分类指标macro与weighted过程、用网格搜索构建一个完整的机器学习流过程。原创 2025-05-18 16:57:20 · 687 阅读 · 0 评论 -
【机器学习实战笔记 3】Scikit-Learn使用与进阶 一
主要讲解sklearn的使用以及常见的模块:逻辑回归、多元线性回归、正则化等。原创 2025-05-16 16:25:54 · 748 阅读 · 0 评论 -
【机器学习实战笔记 1】 回归模型与梯度下降
本文主要围绕回归类算法展开。原创 2025-01-12 22:11:15 · 1975 阅读 · 0 评论 -
【论文带读】LLMs as Zero-shot Graph Learners: Alignment of GNN Representations with LLM Token Embeddings
文中引入了一种名为 Token Embedding-Aligned Graph Language Model (TEA-GLM)(Token 嵌入对齐图语言模型) 的新颖框架,该框架利用 LLM 作为跨数据集和跨任务用于图机器学习的零样本学习器。具体来说,该方法预训练 GNN,将GNN得到的表示与 LLM 的token嵌入对齐。然后,训练一个线性投影器,将 GNN 的表示转换为固定数量的 graph token 嵌入,而无需调整 LLM。原创 2024-12-29 20:29:32 · 1897 阅读 · 0 评论