Gradient-Adaptive Policy Optimization:Towards Multi-Objective Alignment of Large Language Models

2025.acl-long.549.pdfhttps://aclanthology.org/2025.acl-long.549.pdf

1. 概述

        大型语言模型(LLMs)(Anthropic, 2023; OpenAI, 2024)已经在广泛的实际应用中展示了显著的能力(Bubeck et al., 2023),包括内容创作(Yuan et al., 2022)、编程辅助(Chen et al., 2021; Gao et al., 2023)和数学推理(Wei et al., 2022)。随着LLMs在日常AI系统中的日益整合,确保它们与人类偏好(如有帮助、无害和诚实)的一致性已成为一个关键挑战。为了解决这一挑战,已经开发了各种对齐技术(Ji et al., 202

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值