代码地址见文末
一、算法 Pipeline 梳理
(一)任务分解
DriveLM 将自动驾驶任务分解为多个关键阶段,各阶段紧密衔接以实现完整的驾驶决策流程。感知阶段(P1)负责识别、描述和定位当前场景中的关键物体,为后续决策提供基础信息;预测阶段(P2)基于感知结果估算关键物体可能的动作或交互行为,帮助系统预判环境变化;规划阶段(P3)则确定自车可能采取的安全动作,形成初步的决策方案;行为阶段(B)对驾驶决策进行分类,明确自车的行为模式;运动阶段(M)则生成自车未来轨迹的路点,指导车辆具体的运动控制。
(二)各阶段代表性问题
在感知阶段,核心问题包括当前场景中的重要物体有哪些、物体 X 的运动状态如何以及物体 X 的视觉描述等,这些问题旨在全面理解场景中的物体信息。预测阶段关注物体 X 的未来状态、物体 X 是否会出现在自车的行驶方向上,以及自车到达下一个可能位置时应首先 / 其次 / 第三注意哪些物体,以实现对环境变化的预判。规划阶段则聚焦于基于物体 X 的观察自车可采取哪些动作、自车哪些动作会导致与物体 X 碰撞,以及在该场景下自车的安全动作是什么,从而生成合理的驾驶决策。