DQN代码详解

代码链接见文末

1. 任务描述

任务目标: 在 MountainCar-v0 环境中,智能体的目标是尽可能快地将一辆小车从山谷的一端(起始位置)驾驶到山谷的另一端(目标位置),通过学习如何利用环境中的动力学来实现目标。智能体只能施加力量(加速)来推动小车,且受到物理规律的限制:小车无法直接达到目标,需要先通过加速反复地上下山谷来获得足够的动能。

环境描述

  • 状态空间:环境的状态由小车的位置和速度组成。位置范围为 [-1.2, 0.6],速度范围为 [-0.07, 0.07]。
  • 动作空间:智能体可以采取的动作是三个:加速(+1)、减速(-1)和保持当前速度(0)。
  • 奖励
    • 每个时间步的奖励为 -1(鼓励智能体尽量减少时间消耗)。
    • 如果智能体成功到达目标(位置 ≥ 0.5),将获得一个奖励+100。
  • 结束条件:智能体在完成任务或者经过一定的时间步骤(通常是200步)后结束。         

### DQN(深度Q网络)概述 #### 1. 基本概念 深度Q网络(Deep Q-Network, DQN)是一种结合了深度学习和Q-Learning的强化学习算法。该方法利用深度神经网络来近似Q值函数,使得DQN能够在处理高维状态空间的任务上表现优异,例如Atari游戏等复杂环境[^2]。 #### 2. 工作机制 在传统的Q-Learning中,智能体通过不断尝试不同的动作并记录下每一步的状态转移及其奖励情况,以此更新其对于各个状态下采取不同行动所能获得预期回报的理解——即所谓的Q表。然而当面对连续或者非常高维度的状态表示时,这种方法变得不可行;而DQN则引入了一个深层卷积神经网路作为价值估计器,输入当前观测到的游戏画面或其他形式的数据流,输出对应于每一个可能操作的价值评估分数。这样不仅解决了传统表格型Q-learning难以应对大规模甚至无限大状态集的问题,而且借助强大的特征提取能力实现了更好的泛化性能[^1]。 #### 3. 关键技术点 为了提高训练效率与稳定性,在原始版本的基础上还加入了一些重要的改进措施: - **经验回放(Experience Replay)**:存储过去经历过的样本,并从中随机抽取批次来进行梯度下降优化过程。这有助于打破数据之间的关联性,减少参数调整过程中可能出现的振荡现象。 - **固定目标网络(Target Network)**:每隔一定时间步数复制一次在线策略所使用的权重给离线的目标网络,用来计算TD误差时不随即时变化而波动过大,从而促进收敛速度加快的同时也增强了整体架构鲁棒性。 ```python import torch.nn as nn class DQN(nn.Module): def __init__(self, input_dim, output_dim): super(DQN, self).__init__() self.fc = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Linear(128, 128), nn.ReLU(), nn.Linear(128, output_dim) ) def forward(self, x): return self.fc(x) ``` 此段代码定义了一个简单的全连接层组成的DQN模型结构,适用于低纬度向量化的状态表示场景。实际应用中通常会采用更复杂的CNN架构来适应图像类输入源的需求[^3]。 #### 4. 应用领域 除了经典的电子竞技模拟之外,DQN同样被广泛应用于自动驾驶汽车路径规划、智能家居设备交互逻辑设计等领域。特别是在交通信号灯调控方面,研究者们发现基于DQN的方法可以有效缓解城市道路拥堵状况,提升通行效率和服务质量[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值