- 博客(10)
- 收藏
- 关注
原创 随机森林算法
随机森林在训练过程中,会对原始训练集进行有放回的抽样(Bootstrap sampling),生成多个训练子集,每个子集用于训练一棵决策树。在每棵决策树的构建过程中,在每个节点分裂时,不是考虑所有特征,而是从随机选取的特征子集(通常是特征总数的平方根)中选择最优的特征进行分裂。随机森林算法的核心思想是“集成学习”,通过构建多个弱分类器(通常是决策树)并将它们的预测结果进行结合,来得到更准确的预测。在分类问题中,集成方法采用“投票”机制,即每棵树的预测结果投票,最终选择得票最多的类别作为预测结果。
2025-03-26 06:32:08
291
1
原创 卷积神经网络
权值共享其实就是对图像用同样的卷积核进行卷积操作,也就意味着第一个隐藏层的所有神经元所能检测到处于图像不同位置的完全相同的特征。其主要的能力就能检测到不同位置的同一类型特征,也就是卷积网络能很好的适应图像的小范围的平移性,即有较好的平移不变性(比如将输入图像的猫的位置移动之后,同样能够检测到猫的图像)局部感受野:由于图像的空间联系是局部的,每个神经元不需要对全部的图像做感受,只需要感受局部特征即可,然后在更高层将这些感受得到的不同的局部神经元综合起来就可以得到全局的信息了,这样可以减少连接的数目。
2024-02-14 10:05:12
412
2
原创 卷积神经网络
其主要的能力就能检测到不同位置的同一类型特征,也就是卷积网络能很好的适应图像的小范围的平移性,即有较好的平移不变性(比如将输入图像的猫的位置移动之后,同样能够检测到猫的图像)下采样层:因为对图像进行下采样,可以减少数据处理量同时保留有用信息,采样可以混淆特征的具体位置,因为某个特征找出来之后,它的位置已经不重要了,我们只需要这个特征和其他特征的相对位置,可以应对形变和扭曲带来的同类物体的变化。卷积层:因为通过卷积运算我们可以提取出图像的特征,通过卷积运算可以使得原始信号的某些特征增强,并且降低噪声。
2024-02-14 10:01:46
427
1
原创 java多线程
2. 实现Runnable接口:创建一个实现了Runnable接口的类,并实现其run()方法,该方法中定义了线程要执行的任务。然后创建该类的对象,并将其作为参数传递给Thread类的构造方法,最后调用start()方法启动线程。1. 继承Thread类:创建一个继承自Thread类的子类,并重写run()方法,该方法中定义了线程要执行的任务。Java多线程还提供了一些常用的线程控制方法,如sleep()、join()、yield()等,用于控制线程的执行顺序和时间。
2024-02-14 09:52:21
437
1
原创 哈希算法Hash Funcation
最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。MD5不可逆的原因是其是一种散列函数,使用的是hash算法,在计算过程中原文的部分信息是丢失了的。如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资源下,哈希算法还是被很难破解的。
2024-02-13 00:23:39
384
原创 冒泡排序算法
冒泡排序(BubbleSort)的基本概念是:依次比较相邻的两个数,将小数放在前面,大数放在后面。即首先比较第1个和第2个数,将小数放前,大数放后。然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。重复以上过程,仍从第一对数开始比较(因为可能由于第2个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到最大数前的一对相邻数。
2024-02-12 23:49:38
211
1
原创 雪花算法生成ID
生成ID的方法是加了synchronized关键词,确保线程安全,否则在并发情况下,生成的ID就有可能重复了,同一毫秒生成多个ID时,根据雪花算法的组成,如果同一台机器同一毫秒需要生成多个ID,因为毫秒的时间戳,机器工作ID一样,则前52位一致,所以需要靠后12位的序列号来区分。timestamp记录了上一次生成ID的毫秒的时间戳,如果同一毫秒生成多个id,则两者相等,通过如下代码来生成序列。上述的sequencebits为序列号,这里的定义的12,则要运行如下代码。Java版本的具体实现。
2024-02-12 21:12:58
1059
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人