
生成式
文章平均质量分 96
不会Python小白-xin
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《昇思25天学习打卡营第24天|生成式-Pix2Pix实现图像转换》
Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型该网络学习从输入图像到输出图像的映射,如 Isola 等人在 Image-to-image translation with conditional adversarial networks (2017 年)中所述 。pix2pix 非特定于应用,它可以应用于多种任务,包括从标签地图合成照片,从黑白图像生成彩色照片,将 Google Maps原创 2024-07-18 18:44:23 · 1055 阅读 · 0 评论 -
《昇思25天学习打卡营第23天|生成式-GAN图像生成》
MNIST手写数字数据集是NIST数据集的子集,共有70000张手写数字图片,包含60000张训练样本和10000张测试样本,数字图片为二进制文件,图片大小为28*28,单通道。图片已经预先进行了尺寸归一化和中心化处理。本案例将使用MNIST手写数字数据集来训练一个生成式对抗网络,使用该网络模拟生成手写数字图片。原创 2024-07-18 01:34:05 · 1138 阅读 · 0 评论 -
《昇思25天学习打卡营第22天|生成式-Diffusion扩散模型》
如果将Diffusion与其他生成模型(如Normalizing Flows、GAN或VAE)进行比较,它并没有那么复杂,它们都将噪声从一些简单分布转换为数据样本,Diffusion也是从纯噪声开始通过一个神经网络学习逐步去噪,最终得到一个实际图像。Diffusion对于图像的处理包括以下两个过程:我们选择的固定(或预定义)正向扩散过程qqq:它逐渐将高斯噪声添加到图像中,直到最终得到纯噪声一个学习的反向去噪的扩散过程pθp_\thetapθ。原创 2024-07-18 01:14:20 · 1201 阅读 · 0 评论 -
《昇思25天学习打卡营第21天|生成式-DCGAN生成漫画头像》
在下面的教程中,我们将通过示例代码说明DCGAN网络如何设置网络、优化器、如何计算损失函数以及如何初始化模型权重。在本教程中,使用的共有70,171张动漫头像图片,图片大小均为96*96。原创 2024-07-17 20:41:54 · 1139 阅读 · 0 评论 -
《昇思25天学习打卡营第20天|生成式-CycleGAN图像风格迁移互换》
CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文。该模型实现了一种在没有配对示例的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该模型一个重要应用领域是域迁移(Domain Adaptation),可以通俗地理解为图像风格迁移。原创 2024-07-16 21:03:56 · 591 阅读 · 0 评论