新装上任,不适合新手看,不够详细,只是自己后期换电脑再次安装的一个记录。
目录
1. 安装anaconda
官网安装太慢,选择anaconda的清华镜像源
清华镜像源 选择了一个不新不旧的版本,小废物表示最新版本我不敢。安装过程改改路径,基本上就是Next,可以参考相关。
1.1 配置环境变量
D:\Data_anaconda2023
D:\Data_anaconda2023 \Scripts
D:\Data_anaconda2023 \Library\mingw-w64\bin
D:\Data_anaconda2023 \Library\usr\bin
D:\Data_anaconda2023 \Library\bin
1.2 配置conda
(虚拟环境安装位置、包下载位置、conda下载通道等)
最好不要换虚拟环境的安装位置!!!不然在cmd检测不到虚拟环境,反正最好别换,因为base的位置已经换了,所以不改也在D盘。不影响。
改了的话,pycharm中的CMD可能没有进到虚拟环境,我不知道是pycharm版本问题还是具体什么问题。
C:\Users\1111(你自己的用户名) 该路径下如果没有.condarc文件,自行创建记事本文件(显示文件扩展名,才好修改),然后再重命名改成.condarc
在该文件中配置相应信息,换源。
show_channel_urls: true
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- defaults
1.3 查看conda信息
conda info
(base) C:\Windows\System32>conda info
active environment : base
active env location : D:\ProgramData\anaconda3
shell level : 1
user config file : C:\Users\15808\.condarc
populated config files : C:\Users\15808\.condarc
conda version : 23.7.4
conda-build version : 3.26.1
python version : 3.11.5.final.0
virtual packages : __archspec=1=x86_64
__cuda=12.3=0
__win=0=0
base environment : D:\ProgramData\anaconda3 (writable)
conda av data dir : D:\ProgramData\anaconda3\etc\conda
conda av metadata url : None
channel URLs : https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/noarch
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/win-64
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/noarch
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/win-64
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/noarch
package cache : D:\All_Project_Will_do\anaconda_evns_L\pkgs
envs directories : D:\All_Project_Will_do\anaconda_envs_L\envs
D:\ProgramData\anaconda3\envs
C:\Users\15808\.conda\envs
C:\Users\15808\AppData\Local\conda\conda\envs
platform : win-64
user-agent : conda/23.7.4 requests/2.31.0 CPython/3.11.5 Windows/10 Windows/10.0.22631 aau/0.4.2 c/a1RnixqCYKEGxLkLugMRTw s/PyrGpy8pGf5f_zxevCf95g e/vKw6FCxY0mTlIDjmorkQeg
administrator : True
netrc file : None
offline mode : False
后面我把.condarc文件改动的虚拟环境地址删了,就回到了默认的anaconda下的envs下面。
1.4 配置pip镜像源
临时使用 :
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-packag
更新pip,并配置全局镜像源:
python -m pip install --upgrade pip
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
使用镜像更新pip:python -m pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade pip
直接在pip.ini文件中修改也行
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
2 . 搭环境
搭个稳定一点的通用试试
conda create -n Lhh_Project python=3.8 -y
2.1 查看显卡驱动版本
nvidia-smi
2.2 安装cuda
选择低于自己驱动的版本下载,这里下载了12.2 。如果想下载给更高版本,可以去英伟达官网升级驱动。cuda向下兼容。
下载好后,双击安装包进行安装,可以安装在自定义的目录文件夹下,NO ,我更改了也没有,然后找都找不到,还是通过everything找的。
查看是否安装成功
nvcc -V
报错,因为没设置环境变量,且我改了安装路径。但是默认会到这里,在终端运行这两个程序,PASS即通过,安装没问题,就是要去配环境变量/
运行bandwidthTest.exe 和 deviceQuery.exe
测试通过
建议还是不要改路径啊,找都找不到,避免不必要的麻烦,要改也只改前面的盘名C--->D 其他的不变。
2.3 安装CuDNN(加速器)
cuDNN安装路径 (安装时改了好像也没用):
C:\Program Files\NVIDIA\CUDNN\v9.5
cuda 的安装路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.2下并覆盖。
cd到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite,或者直接进入该目录然后打开终端。然后分别执行
bandwidthTest.exe
deviceQuery.exe
PASS 即通过,perfect!
2.4 安装pytorch
2.4.1 在线安装
pip直接走官网链接安装要很久,使用镜像源的话就只能下载到cpu版本。(pip install 时不要用魔法)
因此要使用pip就还是建议离线安装。
PyTorch官网,不要直接在这个页面装,这样子看不到torch的版本
进以前的版本找需要的
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
然后最好不要按它这个,这样子不会走镜像下载,要下很久,建议后面改个临时镜像。不改的下下来它的安装源是pypi。
可根据下列命令:
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 -i https://pypi.tuna.tsinghua.edu.cn/simple --extra-index-url https://download.pytorch.org/whl/cu113 --trusted-host pypi.tuna.tsinghua.edu.cn
其中:-i
指定了默认的索引URL(清华镜像),而--extra-index-url
添加了官方的PyTorch索引,这样pip就会首先从清华镜像尝试下载,如果找不到,再从官方源下载。
然后我发现配了应该也没用,笑死了。可以试试,大抵还是要魔法好一点。
装好了去测试
2.4.2 离线安装
在官网确定要安装的版本
先下轮子再安装,到 wheel网站,进入torch、torchvision、torchaudio 三大组件各自的网站。我们在这三个组件各自的网站里Ctrl + F搜索 对应版本。例如搜索 2.1.0+cu121
找到对应的文件下载。
下载好后,将三个whl文件放在新建的D:\whl文件夹中。 安装命令为
pip install 路径\轮子名.whl,即:
pip install D:\whl\torch-1.12.0+cu113-cp39-cp39-win_amd64.whl
pip install D:\whl\torchvision-0.13.0+cu113-cp39-cp39-win_amd64.whl
pip install D:\whl\torchaudio-0.12.0+cu113-cp39-cp39-win_amd64.whl
然后就可以拷贝环境以后直接用。
conda create --name <new_env_name> --clone <old_env_name>
conda create --name L --clone Lbase
2.5 安装tensorflow
tensorflow 版本对应关系 官网
安装指南,我直接根据博客的版本安装的,在虚拟环境中又装了cuda和cudnn。博客
记得更新pip,魔法好像也会影响,不懂。
pip install tensorflow-gpu==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
tensorflow
conda search tensorflow-gpu # 查看有哪些版本
其他包的安装最好还是不在pycharm中安装,去conda里面装吧
Anaconda常用命令
# 创建一个新的Anaconda环境
conda create --name myenv python=3.8
# 激活一个已创建的Anaconda环境
conda activate myenv
# 退出当前激活的Anaconda环境
conda deactivate
# 列出所有已创建的Anaconda环境
conda env list
# 删除一个Anaconda环境
conda env remove --name myenv
# 在当前环境中安装一个包
conda install numpy
# 在指定环境中安装一个包
conda install --name myenv numpy
# 安装及卸载
conda install xx=版本号 # 指定版本号
conda install xxx -i 源名称或链接 # 指定下载源
conda uninstall xxx
# 更新环境中的所有包
conda update --all
# 更新环境中的特定包
conda update numpy
# 卸载环境中的特定包
conda remove numpy
# 查找可以安装的包版本
conda search numpy
# 清理Anaconda缓存,释放空间
conda clean --all
# 清除缓存
pip cache purge
# 查看conda的配置信息
conda config --show
# 添加一个channel(源),比如添加清华大学的镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# 移除一个channel
conda config --remove channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
# 显示所有已添加的channels
conda config --show channels
# 使用指定channel安装包
conda install --channel https://conda.anaconda.org/conda-forge scipy
# 克隆一个环境
conda create --name myclone --clone myenv
# 导出一个环境的依赖关系到一个YAML文件
conda env export > environment.yml
# 从一个YAML文件创建一个环境
conda env create -f environment.yml
# 删除cuda (cuda和cudnn会一起消失)
conda uninstall cudatoolkit
# 查看是否有可用GPU、可用GPU数量:
torch.cuda.is_available(), torch.cuda.device_count()
或者
import tensorflow as tf
version=tf.__version__ #输出tensorflow版本
gpu_ok=tf.test.is_gpu_available() #输出gpu可否使用
print("tf version:",version,"\nuse GPU:",gpu_ok)
next time~