20250620-`Pandas.cut` 的使用注意事项

Pandas.cut 的使用注意事项

pd.cut 是 Pandas 提供的一个非常实用的函数,用于将数值数据分割成离散的区间(bins)。它常用于数据分桶(binning)、分类或离散化操作。

参数说明

1. x: Any

  • 描述:输入数据,可以是 Pandas Series、列表或数组。
  • 示例
    import pandas as pd
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    

2. bins: Any

  • 描述:定义分割点的边界。长度必须比 labels 长 1,可以是以下几种类型:
    • 整数:指定分割的区间数,pd.cut 会自动计算等宽的区间。
    • 序列:指定具体的分割点,例如 [0, 5, 10, 15],表示分割区间为 (0, 5](5, 10](10, 15]
  • 示例
    bins = 3  # 自动分割为3个等宽区间
    bins = [0, 5, 10, 15]  # 自定义分割点
    

3. right: bool = True

  • 描述:是否包含右侧边界。
    • 如果为 True,则区间为 (a, b]
    • 如果为 False,则区间为 [a, b)
  • 示例
    pd.cut(x, bins=3, right=True)  # 默认为 (a, b]
    pd.cut(x, bins=3, right=False)  # 区间为 [a, b)
    

4. labels: Any = None

  • 描述:为每个区间指定标签。如果为 None,则默认使用区间字符串作为标签。
  • 示例
    labels = ['低', '中', '高']
    pd.cut(x, bins=3, labels=labels)
    

5. retbins: bool = False

  • 描述:是否返回分割点。
    • 如果为 True,则返回一个元组 (binned_data, bins)
    • 如果为 False,则只返回分桶后的数据。
  • 示例
    result, bins = pd.cut(x, bins=3, retbins=True)
    

6. precision: int = 3

  • 描述:控制分割点的精度(小数点后保留的位数)。
  • 示例
    pd.cut(x, bins=3, precision=2)  # 分割点保留两位小数
    

7. include_lowest: bool = False

  • 描述:是否包含最低值(第一个区间的左边界)。
    • 如果为 True,则第一个区间为 [a, b)
    • 如果为 False,则第一个区间为 (a, b)
  • 示例
    pd.cut(x, bins=3, include_lowest=True)  # 第一个区间包含最低值
    

8. duplicates: str = "raise"

  • 描述:处理重复分割点的方式。
    • "raise":如果发现重复的分割点,抛出 ValueError
    • "drop":忽略重复的分割点。
  • 示例
    pd.cut(x, bins=[0, 5, 5, 10], duplicates='drop')  # 忽略重复的5
    

9. ordered: bool = True

  • 描述:是否将结果作为有序分类(Categorical)返回。
    • 如果为 True,则返回有序分类。此时 labels 中的数据必须唯一
    • 如果为 False,则返回无序分类。此时 labels 中的数据可重复
  • 示例
    pd.cut(x, bins=3, ordered=True)  # 默认为有序分类
    

返回值

  • 返回类型:Pandas Categorical 类型(分类数据)。
  • 内容:每个数据点对应的区间标签。

使用示例

示例 1:自动分割区间

import pandas as pd

x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
result = pd.cut(x, bins=3)
print(result)

输出:

[(0.994, 4.0], (0.994, 4.0], (0.994, 4.0], (0.994, 4.0], (4.0, 7.0], (4.0, 7.0], (4.0, 7.0], (7.0, 10.0], (7.0, 10.0], (7.0, 10.0]]
Categories (3, interval[float64]): [(0.994, 4.0] < (4.0, 7.0] < (7.0, 10.0]]

示例 2:自定义分割点

result = pd.cut(x, bins=[0, 5, 10, 15])
print(result)

输出:

[(0, 5], (0, 5], (0, 5], (0, 5], (0, 5], (5, 10], (5, 10], (5, 10], (5, 10], (5, 10]]
Categories (3, interval[int64]): [(0, 5] < (5, 10] < (10, 15]]

示例 3:自定义标签

result = pd.cut(x, bins=[0, 5, 10, 15], labels=['低', '中', '高'])
print(result)

输出:

[低, 低, 低, 低, 低, 中, 中, 中, 中, 中]
Categories (3, object): [低 < 中 < 高]

示例 4:返回分割点

result, bins = pd.cut(x, bins=3, retbins=True)
print(result)
print(bins)

输出:

[(0.994, 4.0], (0.994, 4.0], (0.994, 4.0], (0.994, 4.0], (4.0, 7.0], (4.0, 7.0], (4.0, 7.0], (7.0, 10.0], (7.0, 10.0], (7.0, 10.0]]
Categories (3, interval[float64]): [(0.994, 4.0] < (4.0, 7.0] < (7.0, 10.0]]
[0.994 4.     7.     10.   ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈晨辰熟稳重

让我看看是哪个靓仔支持了我!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值