自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

……

来都来了,随便看看吧!

  • 博客(67)
  • 资源 (23)
  • 收藏
  • 关注

原创 20250723-算法分析与设计之旅行商问题(Traveling Salesman Problem,TSP)

旅行商问题(TSP)是经典的组合优化问题,要求找到访问所有城市并返回起点的最短路径。其数学模型基于城市集合和距离矩阵,目标是最小化总行程。该问题属于NP难问题,随着城市数量增加,求解复杂度呈指数级增长。TSP广泛应用于物流配送、电路板设计等领域。解决方法分为精确算法(暴力搜索、动态规划)和近似算法(贪心算法、启发式算法)。尽管已有多种求解方法,但大规模TSP问题仍面临计算复杂度高的挑战。

2025-08-04 11:40:32 400

原创 20250723-数据挖掘之数据融合与分析可视化(可作为毕设)

本文基于昆明市OSM地图数据、出租车GPS轨迹数据和新浪微博签到数据,开展多源位置数据融合与城市热点挖掘研究。研究首先构建数据质量评估框架,采用AHP方法进行质量评估并完成数据清洗;然后提出融合方法解决两类数据的时空不平衡性问题;接着通过聚类分析识别城市热点区域并分析其分布模式与成因;最后开发基于百度地图API的可视化系统,实现热点区域空间分布、时空模式和成因分析的可视化展示。研究包含完整的数据处理流程、分析方法和可视化实现,为城市空间特征分析提供参考。

2025-08-04 11:29:57 160

原创 20250704-文本分类与对抗攻击(可作为毕设)

本文研究了基于BioBERT-GRU-Attention(BGA)模型的医学文本分类及其对抗攻击防御。在Medical Transcriptions数据集上,BGA模型取得72%的准确率和F1值。研究采用FGSM和BIM两种白盒攻击方法,实验表明BIM攻击使模型性能显著下降至56%准确率。通过对抗样本分析,揭示了模型在鲁棒性方面的不足,为未来改进医疗文本分类系统的安全性提供了实证依据。研究过程完整复现所需数据和代码均已开源。

2025-07-24 09:56:23 210

原创 20250704-基于强化学习在云计算环境中的虚拟机资源调度研究(可作为毕设)

.oss-cn-beijing.aliyuncs.com/img/202407061954293.png) 研究结论 本研究针对云计算环境下的虚拟机资源调度问题,提出了一种基于深度强化学习(DRL)的智能调度方法。通过构建"仿真-训练-验证"闭环系统,在多目标优化(总完成时间、平均完成时间、资源利用率)方面取得了显著成效: 算法性能:DRL方法在总完成时间上较传统启发式算法(首次适应、Tetris)缩短15%-30%,资源利用率提升5%以上; 系统效率:采用多进程并行训练策略后,训练效率

2025-07-23 18:23:37 837

原创 20250713-`Seaborn.pairplot` 的使用注意事项

本文主要介绍了Python中Seaborn库的`pairplot`函数的使用注意事项。`pairplot`是Seaborn中用于探索性数据分析的常用函数,能够在一个调用中展示变量间的散点图、单变量分布以及按类别变量分组的颜色映射。文章详细介绍了`pairplot`的基本语法、参数详解与技巧、常见用法示例、返回对象及进一步自定义方法,以及常见问题及解决方法,旨在帮助读者更好地使用`pairplot`进行数据可视化。**关键段落**- **基本语法**`pairplot`函数的基本语法包括多个参数,如`

2025-07-13 15:12:29 455

原创 20250620-`Pandas.cut` 的使用注意事项

pd.cut是Pandas中用于数值数据离散化的函数,可将数据分割成指定区间。主要参数包括:输入数据x,定义分割点的bins(整数或序列),控制区间闭合方向的right,自定义标签labels,是否返回分割点retbins,精度控制precision,是否包含最低值include_lowest,重复分割点处理方式duplicates,以及是否返回有序分类ordered。典型应用场景包括自动等宽分桶(示例1)、自定义分割区间(示例2)、添加分类标签(示例3)等,返回结果为分类数据。

2025-06-20 21:34:32 658

原创 20250608-在 Windows 上使用 PyCharm 通过 SSH 连接到远程 Ubuntu 机器的 Anaconda 环境

本文介绍了在Windows系统使用PyCharm通过SSH连接远程Ubuntu机器的Anaconda环境的完整步骤。首先需确保远程Ubuntu开启SSH服务,然后在Windows安装OpenSSH客户端。重点讲解了PyCharm中配置SSH连接的详细流程,包括填写主机信息、端口、用户名密码以及Python解释器路径。特别针对可能出现的权限问题(错误代码126)提供了解决方案,即检查并修改Python解释器文件的执行权限。最后提醒用户注意防火墙设置和SSH配置文件修改等注意事项,确保连接顺畅。

2025-06-08 01:45:05 968

原创 20250607-在Ubuntu中使用Anaconda创建新环境并使用本地的备份文件yaml进行配置

摘要: 本文详细介绍了如何在远程Ubuntu系统中使用本地Windows生成的Anaconda环境备份文件(my.yaml)创建新环境。步骤包括:安装Anaconda并配置环境变量、生成/传输YAML文件、通过conda env create命令创建环境(如Py31209),并提供多种验证方法(如conda env list、激活测试、检查日志等)。同时总结了常见问题(路径错误、依赖冲突)的解决方法,确保用户能顺利完成跨系统环境迁移。(150字)

2025-06-07 21:26:52 978

原创 20250525-更新 Anaconda 和 `pip` 中的库包 ——胡扯的

摘要 更新Anaconda和pip中的库包需谨慎操作,可能导致依赖冲突或不兼容问题。Anaconda用户可使用conda update --all更新所有包,而pip用户应先升级pip工具本身。建议通过conda list --outdated或pip list --outdated检查可用更新,并优先选择更新特定包而非全部更新。为安全起见,可创建新环境进行更新测试。该操作耗时较长且存在风险,需根据实际情况权衡。

2025-05-25 11:06:17 230

原创 20250510-关于 Anaconda 镜像源的配置与使用

本文介绍了Anaconda和pip管理工具配置国内镜像源的方法。主要内容包括:1)使用conda命令查看和修改.condarc配置文件中的镜像源;2)手动编辑.condarc文件调整镜像源;3)设置show_channel_urls选项;4)使用国内pip镜像源安装库包的具体命令格式;5)列出了包括清华、豆瓣、阿里云等常用国内镜像源地址。这些方法可以帮助用户在国内网络环境下更高效地下载和管理Python环境所需的软件包。

2025-05-10 23:12:18 481

原创 20250416-Python 中常见的填充(pad)方法

在 Python 中,`pad` 方法通常与**字符串**或**数组**操作相关,用于在数据的前后填充特定的值,以达到指定的长度或格式。以下是几种常见的与 `pad` 相关的用法:字符串、PyTorch、NumPy 和 Pandas 中 pad 方法

2025-04-16 15:11:32 833

原创 20250330-傅里叶级数专题之快速傅里叶变换等(6/6)

傅里叶级数(Fourier Series, FS)、 傅里叶变换(Fourier Transform, FT)、离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)、离散傅里叶变换(Discrete Fourier Transform, DFT) 与 快速傅里叶变换(Fast Fourier Transform, FFT). ——2025.1.11​ 傅里叶级数、傅里叶变换: 连续的信号/函数 〰️ (信号的周期性)​ 离散傅里叶级数、离散时间傅里叶变

2025-03-30 16:51:07 235

原创 20250330-傅里叶级数专题之离散傅里叶变换(5/6)

傅里叶级数(Fourier Series, FS)、 傅里叶变换(Fourier Transform, FT)、离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)、离散傅里叶变换(Discrete Fourier Transform, DFT) 与 快速傅里叶变换(Fast Fourier Transform, FFT). ——2025.1.11​ 傅里叶级数、傅里叶变换: 连续的信号/函数 〰️ (信号的周期性)​ 离散傅里叶级数、离散时间傅里叶变

2025-03-30 16:48:43 493

原创 20250330-傅里叶级数专题之离散时间傅里叶变换(4/6)

傅里叶级数(Fourier Series, FS)、 傅里叶变换(Fourier Transform, FT)、离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)、离散傅里叶变换(Discrete Fourier Transform, DFT) 与 快速傅里叶变换(Fast Fourier Transform, FFT). ——2025.1.11​ 傅里叶级数、傅里叶变换: 连续的信号/函数 〰️ (信号的周期性)​ 离散傅里叶级数、离散时间傅里叶变

2025-03-30 16:44:09 448

原创 20250330-傅里叶级数专题之离散傅里叶级数(3/6)

傅里叶级数(Fourier Series, FS)、 傅里叶变换(Fourier Transform, FT)、离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)、离散傅里叶变换(Discrete Fourier Transform, DFT) 与 快速傅里叶变换(Fast Fourier Transform, FFT). ——2025.1.11​ 傅里叶级数、傅里叶变换: 连续的信号/函数 〰️ (信号的周期性)​ 离散傅里叶级数、离散时间傅里叶变

2025-03-30 16:41:23 210

原创 20250330-傅里叶级数专题之傅里叶变换(2/6)

傅里叶级数(Fourier Series, FS)、 傅里叶变换(Fourier Transform, FT)、离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)、离散傅里叶变换(Discrete Fourier Transform, DFT) 与 快速傅里叶变换(Fast Fourier Transform, FFT). ——2025.1.11​ 傅里叶级数、傅里叶变换: 连续的信号/函数 〰️ (信号的周期性)​ 离散傅里叶级数、离散时间傅里叶变

2025-03-30 16:36:59 409

原创 20250330-傅里叶级数专题之傅里叶级数(1/6)

傅里叶级数(Fourier Series, FS)、 傅里叶变换(Fourier Transform, FT)、离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)、离散傅里叶变换(Discrete Fourier Transform, DFT) 与 快速傅里叶变换(Fast Fourier Transform, FFT). ——2025.1.11​ 傅里叶级数、傅里叶变换: 连续的信号/函数 〰️ (信号的周期性)​ 离散傅里叶级数、离散时间傅里叶变

2025-03-30 16:36:31 289

原创 20250328-傅里叶级数专题之数学基础(0/6)

傅里叶级数(Fourier Series, FS)、 傅里叶变换(Fourier Transform, FT)、离散时间傅里叶变换(Discrete-Time Fourier Transform, DTFT)、离散傅里叶变换(Discrete Fourier Transform, DFT) 与 快速傅里叶变换(Fast Fourier Transform, FFT). ——2025.1.11​ 傅里叶级数、傅里叶变换: 连续的信号/函数 〰️ (信号的周期性)​ 离散傅里叶级数、离散时间傅里叶变

2025-03-28 11:34:11 615

原创 20250324-使用 `nltk` 的 `sent_tokenize`, `word_tokenize、WordNetLemmatizer` 方法时报错

本文介绍了解决使用NLTK工具包时常见的punkt_tab和wordnet资源缺失问题的方法。当出现LookupError时,可通过两种方式解决:1) 运行nltk.download()命令自动下载资源;2) 手动下载对应资源包并解压到nltk_data目录。特别推荐从GitHub下载完整的nltk_data包,可一次性解决大多数文本处理问题。文章提供了详细的操作步骤和验证方法,确保分词和词形还原功能正常运行,并附有相关截图和参考链接,便于用户理解和操作。

2025-03-24 20:06:44 1174

原创 20250124-注意力机制(5-7)【3/3完结】 ——已复现

注意力机制(Attention Mechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制。人类视网膜不同的部位具有不同程度的信息处理能力,即敏锐度(Acuity),只有视网膜中央凹部位具有最强的敏锐度。为了合理利用有限的视觉信息处理资源,人类需要选择视觉区域中的特定部分,然后集中关注它。例如,人们在阅读时,通常只有少量要被读取的词会被关注和处理。综上,注意力机制主要有两个方面:决定需要关注输入的哪部分

2025-01-24 11:25:34 432

原创 20250124-注意力机制(3-4)【2/3】 ——已复现

注意力机制(Attention Mechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制。人类视网膜不同的部位具有不同程度的信息处理能力,即敏锐度(Acuity),只有视网膜中央凹部位具有最强的敏锐度。为了合理利用有限的视觉信息处理资源,人类需要选择视觉区域中的特定部分,然后集中关注它。例如,人们在阅读时,通常只有少量要被读取的词会被关注和处理。综上,注意力机制主要有两个方面:决定需要关注输入的哪部分

2025-01-24 11:01:57 318

原创 20250124-注意力机制(1-2)【1/3】 ——已复现

注意力机制(Attention Mechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制。人类视网膜不同的部位具有不同程度的信息处理能力,即敏锐度(Acuity),只有视网膜中央凹部位具有最强的敏锐度。为了合理利用有限的视觉信息处理资源,人类需要选择视觉区域中的特定部分,然后集中关注它。例如,人们在阅读时,通常只有少量要被读取的词会被关注和处理。综上,注意力机制主要有两个方面:决定需要关注输入的哪部分

2025-01-23 22:55:23 540

原创 20250118-读取并显示彩色图像以及提取彩色图像的 R、G、B 分量

本文介绍了如何用Python读取和显示彩色图像,并提取其R、G、B分量。演示了三种图像读取方法:PIL库、OpenCV库(需BGR转RGB)以及OpenCV原生显示。重点对比了BGR和RGB格式的显示差异,指出颜色通道顺序不同会导致色彩失真。提供了两种分量提取方案:PIL直接提取RGB分量,OpenCV通过cv2.split()或cv2.cvtColor()转换后提取,均能获得单通道图像。文中包含完整代码示例和效果对比图,展示了各颜色分量的可视化结果。

2025-01-18 22:50:44 922

原创 20250108-解决报错:RuntimeError: view size is not compatible with input tensor‘s size and stride……

摘要:当PyTorch张量因内存不连续引发view()函数错误时,可通过两种方法解决:1) 先调用.contiguous()创建连续副本再使用view();2) 直接使用.reshape()自动处理连续性。两种方法均可实现安全的张量形状变换,避免运行时错误。

2025-01-08 18:46:09 706

原创 20250108-实验+神经网络(实现见绑定资源)

的反向传播算法(可以使用torch中自动微分),程序应能够正确计算函数𝑓的雅克比矩阵,的反向传播算法(不允许使用自动微分),程序应能够正确计算函数𝑓的雅克比矩阵.实验要求2:基于pytorch实现。实验要求1:基于numpy实现。

2025-01-08 18:08:15 1041

原创 20241201-EcoEye Reproduction(论文复现)

本文介绍了EcoEye植物病理图像分类系统的复现过程。该项目基于深度学习技术,使用特定数据集(new-kaggle-NPDDA)进行训练、验证和测试。复现代码以Jupyter Notebook形式提供,包含完整的实现过程和多项可视化结果展示。文章附有大量分类效果和过程分析图片,涵盖模型训练曲线、特征可视化、混淆矩阵等多个方面。相关资源(论文、数据集、实现代码)已打包提供下载链接,便于研究者复现和验证该植物病害识别系统的工作效果。

2025-01-05 14:58:37 338

原创 20250105-EcoEye:基于深度学习的植物病理图像数据分类——(已复现)

​ 如果没有适当的早期发现和鉴定植物病原体,叶片病害可能对农业产量构成重大挑战。我们提出了一种基于深度学习的植物病害自动识别方法,而不是由农民进行的主观且需要专业知识的视觉检测。在不同的实验中,训练一个ResNet-50架构获得了最好的结果,验证准确率为96.5%,测试准确率为65.6%。

2025-01-05 14:51:03 105

原创 20241206-解决hadoop报错:org.apache.hadoop.ipc.RpcException: RPC response exceeds maximum data length

Hadoop RPC报错解决方法摘要 当遇到"RPC response exceeds maximum data length"错误时,可采取以下措施: 使用jps命令检查namenode和datanode进程状态,确保已启动(未启动时执行start-dfs) 检查core-site.xml配置文件中fs.default.name属性,确认请求地址正确无误

2024-12-30 17:25:22 907

原创 20241218-信息安全理论与技术复习题

信息安全的基本属性是(D )。A、机密性B、可用性C、完整性D、上面 3 项都是“会话侦听和劫持技术” 是属于(B)的技术。A、 密码分析还原B、 协议漏洞渗透C、 应用漏洞分析与渗透D、 DOS 攻击对攻击可能性的分析在很大程度上带有(B ).A、客观性B、主观性C、盲目性D、上面 3 项都不是从安全属性对各种网络攻击进行分类,阻断攻击是针对(B)的攻击。A、 机密性B、可用性C、 完整性D、 真实性。

2024-12-28 21:53:56 1126

原创 20241207-为什么归一化输入有助于神经网络

神经网络归一化能显著提升训练效率和模型性能。其核心优势包括加速收敛、避免梯度异常、提高模型学习能力、降低初始化依赖、增强数值稳定性,以及统一特征尺度便于比较。归一化通过平衡数据分布,使梯度下降更高效,同时减少梯度消失/爆炸风险,为深度网络训练提供更稳定的数值环境。

2024-12-07 21:53:19 549

原创 20241206-Windows 10下使用IDEA 2024.2.3(JDK 18.0.2.1)搭建Hadoop 3.3.6开发环境

# Windows 10下使用IDEA 2024.2.3(JDK 18.0.2.1)搭建Hadoop 3.3.6开发环境## 1. 配置好本地hadoop之后## 2. idea 新建或导入 Maven 项目 ## 3. 编写 `pom.xml` 文件: 有些版本和项目信息需要根据自己的项目进行调整> JDK 18.0.2.1> Hadoop 3.3.6

2024-12-06 14:22:01 442

原创 20241123-四元数高阶奇异值分解-(8-12)【5/5完结】

当把四元数和高阶奇异值分解结合起来时,就是考虑在四元数域上对张量进行分解。这种分解方法可以充分利用四元数的特性来处理具有复杂数学结构的数据。例如,在彩色图像处理中,彩色图像可以看作是一个三维张量(高度、宽度和颜色通道)。由于四元数可以很好地表示颜色信息(每个像素的颜色可以用一个四元数来表示,其中实部可以表示亮度,虚部可以表示颜色的其他属性),通过四元数高阶奇异值分解可以更好地分析和处理彩色图像。它可能用于图像的特征提取、图像压缩或者图像去噪等任务,能够更有效地处理图像中的颜色信息和空间信息。

2024-11-23 19:51:54 358

原创 20241123-四元数高阶奇异值分解-(6-7)【4/5】

当把四元数和高阶奇异值分解结合起来时,就是考虑在四元数域上对张量进行分解。这种分解方法可以充分利用四元数的特性来处理具有复杂数学结构的数据。例如,在彩色图像处理中,彩色图像可以看作是一个三维张量(高度、宽度和颜色通道)。由于四元数可以很好地表示颜色信息(每个像素的颜色可以用一个四元数来表示,其中实部可以表示亮度,虚部可以表示颜色的其他属性),通过四元数高阶奇异值分解可以更好地分析和处理彩色图像。它可能用于图像的特征提取、图像压缩或者图像去噪等任务,能够更有效地处理图像中的颜色信息和空间信息。

2024-11-23 19:45:54 341

原创 20241123-四元数高阶奇异值分解-(4-5)【3/5】

当把四元数和高阶奇异值分解结合起来时,就是考虑在四元数域上对张量进行分解。这种分解方法可以充分利用四元数的特性来处理具有复杂数学结构的数据。例如,在彩色图像处理中,彩色图像可以看作是一个三维张量(高度、宽度和颜色通道)。由于四元数可以很好地表示颜色信息(每个像素的颜色可以用一个四元数来表示,其中实部可以表示亮度,虚部可以表示颜色的其他属性),通过四元数高阶奇异值分解可以更好地分析和处理彩色图像。它可能用于图像的特征提取、图像压缩或者图像去噪等任务,能够更有效地处理图像中的颜色信息和空间信息。

2024-11-23 19:40:59 533

原创 20241123-四元数高阶奇异值分解-(2-3)【2/5】

当把四元数和高阶奇异值分解结合起来时,就是考虑在四元数域上对张量进行分解。这种分解方法可以充分利用四元数的特性来处理具有复杂数学结构的数据。例如,在彩色图像处理中,彩色图像可以看作是一个三维张量(高度、宽度和颜色通道)。由于四元数可以很好地表示颜色信息(每个像素的颜色可以用一个四元数来表示,其中实部可以表示亮度,虚部可以表示颜色的其他属性),通过四元数高阶奇异值分解可以更好地分析和处理彩色图像。它可能用于图像的特征提取、图像压缩或者图像去噪等任务,能够更有效地处理图像中的颜色信息和空间信息。

2024-11-23 19:37:37 262

原创 20241123-四元数高阶奇异值分解-(1)【1/5】

当把四元数和高阶奇异值分解结合起来时,就是考虑在四元数域上对张量进行分解。这种分解方法可以充分利用四元数的特性来处理具有复杂数学结构的数据。例如,在彩色图像处理中,彩色图像可以看作是一个三维张量(高度、宽度和颜色通道)。由于四元数可以很好地表示颜色信息(每个像素的颜色可以用一个四元数来表示,其中实部可以表示亮度,虚部可以表示颜色的其他属性),通过四元数高阶奇异值分解可以更好地分析和处理彩色图像。它可能用于图像的特征提取、图像压缩或者图像去噪等任务,能够更有效地处理图像中的颜色信息和空间信息。

2024-11-23 19:26:04 691

原创 20241112-Pycharm使用托管的Anaconda的Jupyter Notebook

在python软件包或者anaconda的相应envs中下载包 notebook,应该就可以了,我没试过,我是pythom自动配置的,有试过的小伙伴可以补充。:不要每次使用 Pycharm 运行 Jupyter 文件时都要手动打开 Anaconda 的 Jupyter Notebook。pycharm中配置好会自动安装的,有的要自己配置。

2024-11-12 16:15:40 623 2

原创 20241102-Windows 10上安装虚拟机VMware10.0.2、Hadoop3.3.6与jdk-18.0.2.1

本文详细记录了在Windows 10专业版上搭建Hadoop完全分布式集群的完整过程。主要内容包括:1)在VMware 10.0.2中配置CentOS虚拟机,设置静态IP、关闭防火墙、修改主机名和编辑hosts文件;2)通过Xshell 8.0连接虚拟机并解决yum源配置问题;3)准备hadoop-3.3.6和jdk-18.0.2.1安装包。文档提供了详细的操作命令和配置说明,并附有参考视频和文章链接。特别针对CentOS 7 yum源失效问题给出了解决方案,包括替换为阿里云镜像源的具体步骤。

2024-11-03 01:12:52 1175

原创 20241031-LaTeX常用符号之文字格式等——Typora(6/6)

本文介绍了LaTeX在Typora中的文字格式设置方法,包括文字颜色(如蓝色、棕色、RGB自定义等)、字体样式(加粗、斜体、手写体等)和大小调整(从巨小到巨无霸)。同时推荐了三款实用的颜色转换工具,并附上往期LaTeX符号教程链接,帮助用户快速掌握Typora中的高级排版功能。

2024-10-31 12:26:16 572

转载 20241029-Typora中Markdown的Emoji表情符号

在Markdown中添加表情符号有两种方式:1)直接复制粘贴表情符号(可使用Win+句点快捷键);2)输入表情符号简码(格式为:emoji_name:)。本文提供了大量表情符号及其简码示例,包括笑脸、爱心等分类,如:smile:、:heart:等,方便用户在Markdown文档中快速插入各类表情符号。

2024-10-29 20:52:12 1048

2020-09-25-python题目和总结-实验3,4,5.txt

https://blog.csdn.net/qq_45913057/article/details/108794104

2020-11-28

2020-09-25-python题目和总结-实验6,7.txt

2020-09-25:Python题目和总结:https://blog.csdn.net/qq_45913057/article/details/108794104

2020-11-28

2020-09-25-python题目和总结-实验8,9.txt

2020-09-25:Python题目和总结:https://blog.csdn.net/qq_45913057/article/details/108794104

2020-11-28

(2)DB_GUI.txt

2020-07-03:简单的图书管理系统(Python、SQL Server):https://blog.csdn.net/qq_45913057/article/details/118603779

2021-07-09

(1)DB_TSGLXT_pypyodbc.txt

2020-07-03:简单的图书管理系统(Python、SQL Server):https://blog.csdn.net/qq_45913057/article/details/118603779

2021-07-09

2020.10.23-计算机操作系统(第四版)(汤小丹)-1-8章思维导图.7z

思维导图:2020.10.23-计算机操作系统(第四版)(汤小丹)-1-8章思维导图.7z 原文:http://t.csdn.cn/vAY4Q

2022-06-01

大纲笔记:2020.11.13-信息组织学(储节旺,郭春侠).pdf

大纲笔记:2020.11.13-信息组织学(储节旺,郭春侠).pdf 原文:http://t.csdn.cn/88At1

2022-06-12

2020.11.13-信息组织学(储节旺,郭春侠)-第1 7章.7z

思维导图:2020.11.13-信息组织学(储节旺,郭春侠)-第1 7章.7z 原文:http://t.csdn.cn/88At1

2022-06-13

2021考研推免相关总结

2021考研推免相关总结:https://blog.csdn.net/qq_45913057/article/details/123362890

2022-03-08

2020.10.23-计算机操作系统(第四版)(汤小丹)-第二章:进程的描述和控制 #P32.png

思维导图:2020.10.23-计算机操作系统(第四版)(汤小丹)-第二章:进程的描述和控制 #P32.png 原文:http://t.csdn.cn/vAY4Q

2022-06-01

2020.10.23-计算机操作系统(第四版)(汤小丹)-第一章:引论 #P1.png

思维导图:2020.10.23-计算机操作系统(第四版)(汤小丹)-第一章:引论 #P1.png 原文:http://t.csdn.cn/vAY4Q

2022-06-01

2020.10.23-计算机操作系统(第四版)(汤小丹)-第三章:处理机调度和死锁 #P85.png

思维导图:2020.10.23-计算机操作系统(第四版)(汤小丹)-第三章:处理机调度和死锁 #P85.png 原文:http://t.csdn.cn/vAY4Q

2022-06-01

2020.10.23-计算机操作系统(第四版)(汤小丹)-第四章:存储器管理 #P120.png

思维导图:2020.10.23-计算机操作系统(第四版)(汤小丹)-第四章:存储器管理 #P120.png 原文:http://t.csdn.cn/vAY4Q

2022-06-01

2020.10.23-计算机操作系统(第四版)(汤小丹)-第5 7 8章.7z

思维导图:2020.10.23-计算机操作系统(第四版)(汤小丹)-第5 7 8章.7z 原文:http://t.csdn.cn/vAY4Q

2022-06-01

2020.10.23-计算机操作系统(第四版)(汤小丹)-第六章:I_O系统 #P178.png

思维导图:2020.10.23-计算机操作系统(第四版)(汤小丹)-第六章:I_O系统 #P178.png 原文:http://t.csdn.cn/vAY4Q

2022-06-01

2021-06-24-JDK和eclipse的安装包

2021-06-24:SQL SERVER 2019 安装脚程(教程)(附带第一次使用事项):https://blog.csdn.net/qq_45913057/article/details/118187042

2021-07-09

2021-06-24-SQL SERVER 2019 安装需要的软件.zip

2021-06-24:SQL SERVER 2019 安装脚程(教程)(附带第一次使用事项):https://blog.csdn.net/qq_45913057/article/details/118187042

2021-06-24

2021-07-15:一元多项式的乘法计算(C++).cpp

2021-07-15:一元多项式的乘法计算(C++):https://blog.csdn.net/qq_45913057/article/details/118851829

2021-07-17

2021-07-16:最大子列和问题(C++).cpp

2021-07-16:最大子列和问题(C++):https://blog.csdn.net/qq_45913057/article/details/118852988

2021-07-17

2019-07-08:一元多项式的加减计算(C++).cpp

2019-07-08:一元多项式的加减计算(C++):https://blog.csdn.net/qq_45913057/article/details/118585163

2021-07-10

new-kaggle-NPDDA/valid.7z

20241201-EcoEye Reproduction(论文复现) 20250105-EcoEye:基于深度学习的植物病理图像数据分类——(已复现)

2025-08-04

new-kaggle-NPDDA/test.7z

20241201-EcoEye Reproduction(论文复现) 20250105-EcoEye:基于深度学习的植物病理图像数据分类——(已复现)

2025-08-04

20241218-信息安全理论与技术题目.md

20241218-信息安全理论与技术复习题 https://blog.csdn.net/qq_45913057/article/details/144795762

2025-08-04

new-kaggle-NPDDA/train.7z

20241201-EcoEye Reproduction(论文复现) 20250105-EcoEye:基于深度学习的植物病理图像数据分类——(已复现)

2025-08-04

20250108-实验+神经网络

20250108-实验+神经网络(实现见绑定资源)

2025-01-08

20241201-EcoEye-Reproduction-run.ipynb

20241201-EcoEye Reproduction(论文复现) 20250105-EcoEye:基于深度学习的植物病理图像数据分类——(已复现)

2025-08-04

20250723-旅行商问题(Traveling Salesman Problem,简称TSP).7z

20250723-旅行商问题(Traveling Salesman Problem,简称TSP) https://blog.csdn.net/qq_45913057/article/details/149902302

2025-08-04

1.6-7. 傅里叶级数专题之快速傅里叶变换.png

1.6-7. 傅里叶级数专题之快速傅里叶变换.png

2025-04-06

1.5. 傅里叶级数专题之离散傅里叶变换.png

1.5. 傅里叶级数专题之离散傅里叶变换.png

2025-03-30

1.4. 傅里叶级数专题之离散时间傅里叶变换.png

1.4. 傅里叶级数专题之离散时间傅里叶变换.png

2025-03-30

1.3. 傅里叶级数专题之离散傅里叶级数.png

1.3. 傅里叶级数专题之离散傅里叶级数.png

2025-03-30

1.1. 傅里叶级数专题之傅里叶级数.png

1.1. 傅里叶级数专题之傅里叶级数.png

2025-03-30

1.2. 傅里叶级数专题之傅里叶变换.png

1.2. 傅里叶级数专题之傅里叶变换.png

2025-03-30

20241208-EcoEye:基于深度学习的植物病理图像数据集分类.7z

20250105-EcoEye:Classification on Plant Pathology Image Dataset Using Deep Learning

2025-01-05

20241123-四元数高阶奇异值分解-(2-3).png

20241123-四元数高阶奇异值分解-(2-3):https://blog.csdn.net/qq_45913057/article/details/143997437

2024-11-24

20241123-四元数高阶奇异值分解-(1).png

20241123-四元数高阶奇异值分解-(1):https://blog.csdn.net/qq_45913057/article/details/143997249

2024-11-24

20241123-四元数高阶奇异值分解-(8-12).png

20241123-四元数高阶奇异值分解-(8-12):https://blog.csdn.net/qq_45913057/article/details/143997709

2024-11-24

20241123-四元数高阶奇异值分解-(4-5).png

20241123-四元数高阶奇异值分解-(4-5):https://blog.csdn.net/qq_45913057/article/details/143997554

2024-11-24

20241123-四元数高阶奇异值分解-(6-7).png

20241123-四元数高阶奇异值分解-(6-7):https://blog.csdn.net/qq_45913057/article/details/143997597

2024-11-24

2020.11.13-信息组织学(储节旺,郭春侠)-第2-6共5章.7z

思维导图:2020.11.13-信息组织学(储节旺,郭春侠)-第2-6共5章.7z 原文:http://t.csdn.cn/88At1

2022-06-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除