Problem Description
给定一个包含整数的二维矩阵,子矩形是位于整个阵列内的任何大小为 1×1 或更大的连续子阵列。
矩形的总和是该矩形中所有元素的总和。
在这个问题中,具有最大和的子矩形被称为最大子矩形。
例如,下列数组:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩形为:
9 2
-4 1
-1 8
它拥有最大和 15。
Input Format
输入中将包含一个 N × N 的整数数组。
第一行只输入一个整数 N,表示方形二维数组的大小。
从第二行开始,输入由空格和换行符隔开的 N2 个整数,它们即为二维数组中的 N2 个元素,输入顺序从二维数组的第一行开始向下逐行输入,同一行数据从左向右逐个输入。
数组中的数字会保持在 [−127,127] 的范围内。
Output Format
输出一个整数,代表最大子矩形的总和。
Scope of Data
1 ≤ N ≤ 100
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
Sample Output
15
Idea
Program Code
#include <iostream>
#include <algorithm>
#include <climits>
using namespace std;
const int N = 110;
int n;
int result = INT_MIN; //初始化结果
int matrix[N][N];
int main()
{
/*输入数据*/
cin >> n;
for(int i = 1; i <= n; ++ i)
{
for(int j = 1; j <= n; ++ j)
{
cin >> matrix[i][j];
matrix[i][j] += matrix[i - 1][j]; //前缀和预处理
}
}
/*枚举所有列长为n的二维矩阵,以上、下边界为约束,同时将同一列的元素看作一个整体*/
for(int i = 1; i <= n; ++ i) //表示上边界
{
for(int j = i; j <= n; ++ j) //表示下边界
{
int temp = 0;
/*遍历子矩阵每一列*/
for(int k = 1; k <= n; ++ k)
{
/*若前k - 1个数的最大和为负,则舍弃(取值为0),否则加上第k列的值*/
temp = max(temp, 0) + (matrix[j][k] - matrix[i - 1][k]);
result = max(result, temp); //因为temp为前k列的最大和而非整行的最大和,因此每次作比较
}
}
}
cout << result << endl;
return 0;
}
- If you have any questions,please feel free to communicate with me.