Problem:滑雪场设计

本文介绍了一个滑雪场税收问题,为了避免因最高峰与最低峰高度差大于17而被征税,农夫约翰需要调整山峰高度。文章提供了一种通过枚举不同高度范围来寻找最小调整成本的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

农夫约翰的农场上有 N 个山峰,每座山的高度都是整数。

在冬天,约翰经常在这些山上举办滑雪训练营。

不幸的是,从明年开始,国家将实行一个关于滑雪场的新税法。

如果滑雪场的最高峰与最低峰的高度差大于17,国家就要收税。

为了避免纳税,约翰决定对这些山峰的高度进行修整。

已知,增加或减少一座山峰 x 单位的高度,需要花费 x2 的金钱。

约翰只愿意改变整数单位的高度,且每座山峰只能修改一次。

请问,约翰最少需要花费多少钱,才能够使得最高峰与最低峰的高度差不大于17。

Input Format

第一行包含整数 N。

接下来 N 行,每行包含一个整数,表示一座山的高度。

Output Format

输出一个整数,表示最少花费的金钱。

Scope of Data

1 ≤ N ≤ 1000 ,
数据保证,每座山的初始高度都在 0 ∼ 100 之间。

Sample Input

在这里插入图片描述

Sample Output

在这里插入图片描述

Explain the Sample

最佳方案为,将高度为 1 的山峰,增加 3 个单位高度,将高度为 24 的山峰,减少 3 个单位高度。

Idea

枚举算法

Program Code

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;
const int INF = 1e8; //极限情况h[i]的变化为100,最多共有1000个数据,100 * 100 * 1000 = 1e7,暂取1e8为妙

int n;
int h[N];

int main()
{
    int ans = INF; //初始化为极大值

    cin >> n;
    for(int i = 0; i < n; ++ i)
        cin >> h[i]; //输入项

    //由于每座山的初始高度都在0 ∼ 100之间,且要求最高峰与最低峰的高度差不大于17
    for(int i = 0; i <= 83; ++ i) //可将0 ~ 100高度划分为84个间隔大小为17的闭区间,由小到大枚举
    {
        int cost = 0; //为每次枚举所产生的耗费总值设置临时变量
        int l = i, r = i + 17; //为闭区间左右两端点设置临时变量

        for(int x = 0; x < n; ++ x) //检查输入项是否位于枚举的区间内,若没有则进行处理
        {
            if(h[x] < l)
                cost += (l - h[x]) * (l - h[x]);
            else if(h[x] > r)
                cost += (h[x] - r) * (h[x] - r);
        }
        ans = min(ans, cost); //取最小值
    }

    cout << ans << endl; //输出
    return 0;
}
  • If you have any questions,please feel free to communicate with me.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红油曲奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值