- 博客(2)
- 收藏
- 关注
原创 小批量标准差简介
小批量标准偏差的思想是,在生成器生成一批图像时,考虑整个批次中的图像之间的差异。在训练过程中,生成器的目标是生成能够愚弄判别器的伪造图像,而判别器的目标是尽量区分真实图像和伪造图像。通过将小批量标准偏差考虑到损失函数中,可以促使生成器生成更多样性的图像,因为生成的图像必须在小批量内具有一定的差异性,从而更难以被判别器正确分类。这有助于提高生成器的性能和训练的稳定性。小批量标准偏差是一种有助于改善GAN训练的技术,但它通常需要与其他技术一起使用,如渐进式增长、样式标准偏差等,以实现更高质量的生成图像。
2023-10-12 11:31:15
207
原创 PG-GAN模型架构和优点简述
5.高分辨率生成:PG-GAN最终能够生成非常高分辨率的图像,通常在1024x1024像素。2.稳定性:PG-GAN在训练时更稳定,避免了传统GAN训练中的一些问题,如模式崩溃。1.初始层级:PG-GAN从一个较低分辨率的初始层级开始,通常是4x4像素。3.多样性:通过小批量标准差和渐进增长,PG-GAN能够生成多样性更高的图像,而不会。3.平滑过渡:为了实现平滑过渡,PG-GAN使用淡入技术,即新层级逐渐引入,同时旧。1.高分辨率生成:PG-GAN的渐进式增长允许生成非常高分辨率的图像,因此在生成高。
2023-10-11 20:03:21
427
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人