逆波兰表达式求值

题目:
在这里插入图片描述
思考:

  1. 逆波兰表达式还是比较容易实现计算的

  2. 实现:
class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        int ref = 0;


        stack<int> s;

        for (auto t : tokens)
        {
            if (t == "+")
            {
                int right = s.top();
                s.pop();
                int left = s.top();
                s.pop();

                s.push(left + right);
            }
            else if (t == "-")
            {
                int right = s.top();
                s.pop();
                int left = s.top();
                s.pop();

                s.push(left - right);
            }
            else if (t == "*")
            {
                int right = s.top();
                s.pop();
                int left = s.top();
                s.pop();

                s.push(left * right);
            }
            else if (t == "/")
            {
                int right = s.top();
                s.pop();
                int left = s.top();
                s.pop();

                s.push(left / right);
            }
            else
            {
                s.push(stoi(t));
            }
        }

        ref = s.top();
        return ref;
    }
};

改好看一点:

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        int ref = 0;

        stack<int> s;

        for (auto t : tokens)
        {
            int right =-1;
            int left = -1;


            int op=-1;
            if (t=="+") op=0;
            else if(t=="-") op=1;
            else if (t=="*") op=2;
            else if (t=="/") op=3;

            if (op!=-1)
            {
                right = s.top();
                s.pop();
                left = s.top();
                s.pop();
            }
            switch(op)
            {
                case 0:
                   s.push(left + right);   
                   break;
                case 1:
                   s.push(left - right);   
                   break;
                case 2:
                   s.push(left * right);   
                   break;
                case 3:
                   s.push(left / right);   
                   break;
                default:
                    s.push(stoi(t));
                    break;

            }
        }

        ref = s.top();
        return ref;
    }
};
内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重和阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性和训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模和预测。; 适合人群:具备一定机器学习基础,特别是对神经网络和优化算法有一定了解的研发人员、数据科学家和研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数和训练时间;③ 提高模型的稳定性和泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现,包含详细的代码示例和注释,便于理解和二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展和维护。此外,项目还提供了多种评价指标和可视化分析方法,确保实验结果科学可信。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值