- 博客(120)
- 收藏
- 关注
原创 《Linear programming‑based multi‑objective floorplanning optimization for system‑on‑chip》阅读自用版
本研究目标 为了解决现有方法的局限性,本研究提出了一种基于线性规划的多目标芯片布局优化方法 (LPMOFP)。该方法结合了矩形打包方法和线性规划技术,能够在保证芯片功能的前提下,同时优化芯片的面积、线长和温度等指标。RPM 是一种常用的芯片布局方法,它将芯片模块视为矩形,并按照一定的规则将模块放置在芯片核心区域内。芯片布局优化是指在有限的芯片核心区域内,将芯片模块进行合理的放置,以优化芯片的面积、线长和温度等指标,从而提高芯片的性能和可靠性。随着摩尔定律的推进,芯片集成度不断提高,芯片面积也不断扩大。
2025-08-12 17:17:58
765
原创 《VLSI Floorplanning Algorithm Based on Reinforcement Learning with Obstacles》阅读自用版
实验结果表明,与传统的模拟退火算法相比,该算法可以有效地减少芯片布局规划的总面积和总线长,从而获得更好的芯片布局规划结果。芯片布局规划是 VLSI 物理设计的关键步骤,它涉及将芯片上的各种模块(如处理器、存储器、I/O 接口等)放置在芯片的合适位置,以优化芯片的面积、线长和温度等性能指标。基于强化学习的方法提供了一种新的方向。通过在测试电路集上进行实验,结果表明该算法在优化芯片布局规划的面积和总线长方面优于传统的模拟退火算法,能够有效地减少芯片面积浪费和信号延迟,从而提高芯片的性能和可靠性。
2025-08-12 16:46:20
533
原创 《A Deep Reinforcement Learning Floorplanning Algorithm Based》阅读自用版(基础应用篇)
实验结果表明,本文提出的基于序列对的深度强化学习平面图设计算法在 MCNC 和 GSRC 基准电路集上优于深度 Q-learning 算法和模拟退火算法,特别是在电路规模较大且平面图和布线难度增加的情况下,本文算法的优势更加明显。这是一种无模型的基于策略的算法,与基于价值的方法相比,它确保了更快的收敛速度。本节介绍了本文提出的基于序列对的深度强化学习平面图设计算法的实验结果,并与模拟退火算法和深度 Q-learning 算法进行了对比,验证了算法的有效性。本节总结了本文的主要贡献,并展望了未来的研究方向。
2025-08-12 15:00:16
737
原创 《DeepTH: Chip Placement with Deep Reinforcement Learning Using a Three-Head Policy Network》阅读自用版
芯片布局是将宏单元和标准单元放置在芯片画布上的过程,旨在优化芯片的性能、功耗和面积 (PPA),同时满足密度和布线拥塞的约束。这是一个复杂且耗时的过程,在现代 VLSI 电路设计中至关重要。随着现代 VLSI 电路规模和设计复杂性的不断增长,布局算法需要解决涉及大量迭代的越来越复杂的多目标优化问题。传统的布局算法,如模拟退火和遗传算法,通常难以应对这种复杂性,并且需要大量的计算资源。近年来,强化学习 (RL) 算法在芯片布局方面取得了突破性进展。
2025-08-11 17:00:02
649
原创 《RLPlace: Deep RL Guided Heuristics for Detailed Placement Optimization》阅读自用版
I. 引言详细布局优化问题:RLPlace 算法:II. 相关工作机器学习在 EDA 问题中的应用:III. 背景马尔可夫决策过程 (MDP):强化学习:深度 Q 学习:可满足性理论 (SMT):IV. 问题公式化问题公式化:阶段 1:粗粒度布局阶段 2:细粒度布局V. 实验设置VI. 实验
2025-08-11 16:33:04
513
原创 《Enhancing_Reinforcement_Learning_for_the_Floorplanning_of_Analog_ICs_with_Beam_Search》阅读自用版
【代码】《Enhancing_Reinforcement_Learning_for_the_Floorplanning_of_Analog_ICs_with_Beam_Search》阅读自用版。
2025-08-11 16:03:27
589
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人