- 博客(168)
- 收藏
- 关注
原创 00初窥网络模型量化-梦开始的地方
摘要: 本文介绍了网络模型量化技术,旨在通过降低数值精度(如FP32→INT8)优化深度学习模型在边缘设备的部署。量化可减少存储、加速推理并降低功耗,适用于移动、嵌入式及边缘计算场景。核心方法包括后量化(PTQ)和量化感知训练(QAT),前者直接量化预训练模型,后者通过模拟量化误差提升精度。文章还探讨了量化原理、技术细节(如对称/非对称量化)及实现步骤,并提供了PyTorch代码示例。量化是模型工业落地的关键,能实现"低资源高产出"的部署目标。
2025-07-29 15:53:06
906
原创 为什么在模型训练的过程中有时候引入教师模型用于蒸馏?
知识蒸馏是一种通过大模型(教师模型)指导小模型(学生模型)训练的模型压缩技术。教师模型提供预测概率(soft label),学生模型结合真实标签和教师输出进行训练,利用KL散度损失和交叉熵损失优化性能。相比直接训练,蒸馏能传递更丰富的知识结构(如类间关系),使小模型获得接近大模型的效果,同时保持轻量化优势,适用于边缘设备部署等场景。核心流程是教师模型传授知识,学生模型吸收知识,最终实现高性能轻量化目标。
2025-05-31 20:48:01
414
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人