【20221208】构建用于计算文本相似度的图数据字典或词典

本文探讨了在计算文本相似度时采用的一种创新方法——通过构建图数据来定义文本间的‘距离’。这种方法不仅引入了一阶邻居的概念来表示同义词之间的关系,而且相较于传统的one-hot编码方式,在提升模型可解释性方面具有显著优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在寻找文本之间相似度的时候,我的初级想法是找到一种“距离”。

但是后来再结合图数据的思想,可以构建邻居这种概念,同义词之间是一阶邻居这种,相比于onehot的字典/词典,这个在可解释性上是一种突破,当然我相信这种简单的想法是有人去做的,但是孤陋寡闻的我仍在探索中。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值