李沐动手学深度学习pytorch版 pycharm代码实现

import torch

print(dir(torch.distributions))

print('1.张量的创建')
# ones 函数创建一个具有指定形状的新张量,并将所有元素值设置为 1
t = torch.ones(4)
print('t:', t)

x = torch.arange(12)
print('x:', x)
print('x shape:', x.shape)
print('x.numel():', x.numel())

y = x.reshape(3, 4)  # 改变一个张量的形状而不改变元素数量和元素值
print('y:', y)
print('y.numel():', y.numel())  # 返回张量中元素的总个数

z = torch.zeros(2, 3, 4)  # 创建一个张量,其中所有元素都设置为0
print('z:', z)

w = torch.randn(2, 3, 4)  # 每个元素都从均值为0、标准差为1的标准高斯(正态)分布中随机采样。
print('w:', w)

q = torch.tensor([[[1, 2, 3], [4, 3, 2], [7, 4, 3]]])  # 通过提供包含数值的 Python 列表(或嵌套列表)来为所需张量中的每个元素赋予确定值
print('q:', q)
print('q shape:', q.shape)#三维



print('2.张量的运算')

x = torch.tensor([1.0, 2, 4, 8])#1.0浮点数
y = torch.tensor([2, 2, 2, 2])#整数
print(x + y)
print(x - y)
print(x * y)
print(x / y)
print(x ** y)  # **运算符是求幂运算
print(torch.exp(x))#指数运算

X = torch.arange(12, dtype=torch.float32).reshape(3, 4)#12个数  格式float32  形状三行四列
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
print('c
<think>我们正在处理用户的问题:如何在PyCharm中配置并运行动手学深度学习代码? 根据引用内容,我们需要配置环境,包括安装Anaconda(或Miniconda)、创建虚拟环境、安装必要的包(如pytorch, d2l等),并在PyCharm中设置解释器。 步骤分解: 1. 安装Anaconda或Miniconda(引用[2]提到Miniconda,引用[1][3]提到Anaconda) 2. 配置conda环境(包括设置清华镜像源,引用[3]) 3. 创建虚拟环境并安装指定本的Python(引用[4]提到虚拟环境的重要性) 4. 安装PyTorch和d2l包(引用[1][2][5]) 5. 在PyCharm中配置该虚拟环境作为解释器 6. 下载代码并运行(引用[2]提到下载代码压缩包,引用[5]展示了一个代码示例) 注意:引用[1]提到不要使用Python3.12,因为d2l包可能不支持,建议使用3.11或更低本(引用[2]使用3.7,但根据视频,我们选择3.9或3.8?) 实际上,代码在书中指定了环境,我们可以按照书中的要求来。通常,书中使用Python3.8或3.9。 具体步骤: 第一步:安装Miniconda或Anaconda - 下载Miniconda(轻量级)或Anaconda(完整)。推荐Miniconda,因为占用空间小。 - 安装时勾选“Add to PATH”(引用[2])。 第二步:配置conda镜像源(国内用户建议,加速下载) - 使用引用[3]中的命令设置清华镜像源。 第三步:创建虚拟环境 - 打开命令行(终端),执行以下命令创建虚拟环境(假设使用Python3.9): conda create -n d2l python=3.9 - 激活环境: conda activate d2l 第四步:安装PyTorch和d2l包 - 根据PyTorch官网(https://pytorch.org/)的安装命令安装PyTorch(注意选择适合自己CUDA本的,如果没有GPU则选择CPU本)。 例如,对于没有GPU的用户: conda install pytorch torchvision torchaudio cpuonly -c pytorch - 安装d2l包(注意:d2l包在conda的d2l频道中,或者用pip安装): pip install d2l 第五步:在PyCharm中配置虚拟环境 - 打开PyCharm,创建新项目(或打开已有项目)。 - 在设置中(File -> Settings -> Project: your_project_name -> Python Interpreter),点击齿轮按钮,选择“Add”。 - 选择“Conda Environment”,然后选择“Existing environment”,并找到刚才创建的虚拟环境(通常在Miniconda或Anaconda安装目录下的envs/d2l文件夹中的python.exe)。 - 点击确定。 第六步:下载动手学深度学习》的代码 - 代码仓库:https://github.com/d2l-ai/d2l-zh - 下载zip或克隆到本地,然后在PyCharm中打开项目。 第七步:运行代码 - 打开一个章节的代码文件(如chapter_multilayer-perceptrons/mlp-scratch.py),右键运行。 注意:引用[5]中展示了一个训练多层感知机的代码,其中使用了d2l包。确保代码中导入的包都已安装。 可能遇到的问题: 1. 如果运行代码时出现模块找不到,可能是d2l包没有安装,或者安装的本不对。代码需要d2l包的特定本?但通常安装最新即可。 2. 注意书中代码使用的PyTorch本,最好安装书中指定的本(查看书籍前言或代码仓库的README)。 根据引用[1]的提醒,避免使用Python3.12,我们选择3.9或3.8。 现在,我们将按照上述步骤详细说明。</think>### 在PyCharm中配置并运行动手学深度学习代码的完整指南 #### 一、环境准备 1. **安装Miniconda/Anaconda** - 下载地址:[Miniconda](https://docs.conda.io/en/latest/miniconda.html) 或 [Anaconda](https://www.anaconda.com/download) - 安装时勾选 **"Add to PATH"**(环境变量自动配置)[^2] - 验证安装:终端输入 `conda --version` 显示本号 2. **配置清华镜像源**(加速下载) 在终端执行: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes ``` [^3] 3. **创建虚拟环境** ```bash conda create -n d2l python=3.9 # 推荐Python 3.8-3.10(避免3.12不兼容)[^1][^4] conda activate d2l ``` #### 二、安装核心依赖 在激活的虚拟环境中执行: ```bash # 安装PyTorch(根据硬件选择) conda install pytorch torchvision torchaudio cpuonly -c pytorch # CPU本 # 或 conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia # GPU本 # 安装学习库 pip install d2l jupyter matplotlib pandas ``` #### 三、PyCharm配置 1. **打开项目** - 下载代码仓库: [d2l-zh GitHub](https://github.com/d2l-ai/d2l-zh) - 在PyCharm中选择 `File > Open` 导入解压后的文件夹 2. **设置解释器** - `File > Settings > Project: d2l-zh > Python Interpreter` - 点击齿轮图标 ➜ `Add Local Interpreter` - 选择 `Conda Environment` ➜ 定位到 `Miniconda3/envs/d2l/python.exe` 3. **解决路径问题**(针对d2l包) 在代码开头添加: ```python import sys sys.path.append('..') # 允许导入上级目录的d2l包 ``` #### 四、运行示例代码 以多层感知机为例(`chapter_multilayer-perceptrons/mlp-scratch.py`): 1. 右键文件选择 `Run 'mlp-scratch'` 2. 训练过程将显示损失曲线: ![](https://d2l.ai/_images/output_mlp-scratch_76f463_42_0.svg) [^5] #### 五、常见问题解决 | 问题现象 | 解决方案 | |---------|---------| | `ModuleNotFoundError: No module named 'd2l'` | 1. 确认解释器路径正确<br>2. 在终端执行 `pip install -U d2l` | | 图形无法显示 | 安装 `pip install ipykernel` 并重启PyCharm | | CUDA不可用 | 检查PyTorch安装命令是否匹配CUDA本 | > **虚拟环境优势**:不同项目可隔离Python本和依赖包(如Python 3.8/3.9切换)[^4],避免本冲突。 #### 六、学习建议 1. 调试技巧:在PyCharm中使用 **断点调试** 观察张量变化 2. 修改超参数:直接编辑代码中的 `lr`(学习率)、`num_epochs`(迭代次数)等参数 3. 扩展实践:复制代码文件后重命名,尝试修改网络结构
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值