Java_七大排序算法知识总结之 归并排序

这篇博客详细介绍了归并排序算法,包括其工作原理、Java代码实现以及性能分析。归并排序是一种稳定的排序算法,使用分治策略,通过合并两个有序子序列来创建一个完全有序的序列。在时间复杂度上,归并排序表现为O(n*log(n)),而空间复杂度为O(n)。博客中还给出了具体的Java代码示例,展示了如何将两个数组合并为一个有序数组,并通过递归实现整个数组的排序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.归并排序

        归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

1.1Java算法代码

public static void merge(int[] arr, int left, int mid, int right) {//归并排序,将两个数组合并为一个有序数组
        int[] ans = new int[right - left + 1];
        int k = 0;
        int s1 = left;
        int e1 = mid;
        int s2 = mid + 1;
        int e2 = right;
        while (s1 <= e1 && s2 <= e2) {
            if (arr[s1] <= arr[s2]) {
                ans[k++] = arr[s1++];
            }else {
                ans[k++] = arr[s2++];
            }
        }
        while (s1 <= e1) {
            ans[k++] = arr[s1++];
        }
        while (s2 <= e2) {
            ans[k++] = arr[s2++];
        }
        for(int t = 0; t < ans.length; t++) {
            arr[left + t] = ans[t];
        }
    }

    public static void mergeSort(int[] arr, int left, int right) {//递归将数组划分
        if(left >= right) {
            return;
        }
        int mid = (left + right) / 2;
        mergeSort(arr,left,mid);
        mergeSort(arr,mid + 1,right);
        merge(arr,left,mid,right);
    }

1.2性能分析

时间复杂度空间复杂度
O(n*log(n))O(n)

1.3稳定性

          稳定的排序

### 归并排序Java中的实现 归并排序是一种经典的分治算法,其基本原理是将数组分成较小的子数组直到每个子数组仅有一个元素,之后再逐步合并这些有序的子数组来形成最终的规模有序数组。下面是一个简单的归并排序实现: ```java public class MergeSort { public static void main(String[] args) { int[] array = {38, 27, 43, 3, 9, 82, 10}; mergeSort(array, 0, array.length - 1); for (int i : array) { System.out.print(i + " "); } } private static void mergeSort(int[] nums, int left, int right) { if (left < right) { int mid = (left + right) / 2; mergeSort(nums, left, mid); // 对左半边进行递归排序 mergeSort(nums, mid + 1, right);// 对右半边进行递归排序 merge(nums, left, mid, right); // 合并两个已排序的部分 } } private static void merge(int[] nums, int left, int mid, int right) { int n1 = mid - left + 1; int n2 = right - mid; /* 创建临时数组 */ int[] L = new int[n1]; int[] R = new int[n2]; /* 将数据复制到临时数组 */ for (int i = 0; i < n1; ++i) L[i] = nums[left + i]; for (int j = 0; j < n2; ++j) R[j] = nums[mid + 1 + j]; /* 合并临时数组 */ // 初始化指针 int i = 0, j = 0; // 初始索引k=left int k = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) { nums[k] = L[i]; i++; } else { nums[k] = R[j]; j++; } k++; } /* 复制剩余的L[]元素,如果有的话 */ while (i < n1) { nums[k] = L[i]; i++; k++; } /* 复制剩余的R[]元素,如果有的话 */ while (j < n2) { nums[k] = R[j]; j++; k++; } } } ``` 此代码展示了如何通过创建辅助函数`merge()`来进行两部分之间的合并操作以及核心逻辑所在的`mergeSort()`方法[^1]。 尽管现代版本的Java标准库中对于`Arrays.sort()`和`Collections.sort()`采用了更高效的TimSort作为默认排序方式[^2],上述传统形式的归并排序依然具有重要的学习价值,并且适用于教学目的或者特定场景下的应用开发需求[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值