
机器学习
文章平均质量分 95
Dark universe
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
PyTorch程序实现L1和L2正则项
正则化是机器学习中的一个重要概念,它可以帮助我们防止模型过拟合。在这篇文章中,我将详细介绍两种常见的正则化技术:L1和L2正则项。然后会基于PyTorch平台讲解如何向自己的网络模型中添加上述两种技术,将正则化真正为己所用!!!原创 2023-07-05 16:08:42 · 5425 阅读 · 0 评论 -
Actor-Critic(A2C)算法 原理讲解+pytorch程序实现
Actor-Critic(A2C)算法时强化学习中一种基于策略梯度(Policy Gradient)和价值函数(Value Function)的强化学习方法,通常被用于解决连续动作空间和高维状态空间下的强化学习问题。本文将详细推导Actor-Critic的实现过程并且附上基于pytorch实现的代码,最后给出算法优缺点分析和使用心得。原创 2023-05-06 16:57:42 · 20519 阅读 · 11 评论 -
XGBoost模型调参:GridSearchCV方法网格搜索优化参数
GridSearchCV是XGBoost模型最常用的调参方法。本文主要介绍了如何使用GridSearchCV寻找XGBoost的最优参数,有完整的代码和数据文件。文中详细介绍了GridSearchCV的工作原理,param_grid等常用参数;常见的learning_rate和max_depth等可调参数及调参顺序;最后总结了GridSearchCV的缺点及对应的解决方法。原创 2022-12-31 12:23:31 · 18002 阅读 · 6 评论 -
使用K-Fold训练和预测XGBoost模型的方法
K-Fold方法可以充分利用数据,且经过K-Fold训练出的模型(综合使用时)泛化能力强,不易过拟合。本文将从代码实践的角度剖析在Xgboost模型中如何使用K-Fold技术进行训练和预测。原创 2022-12-30 21:30:09 · 4460 阅读 · 1 评论