
人工智能
文章平均质量分 84
EmorZhong
哈尔滨工程大学毕业,华南理工大学在读。欢迎交流、合作!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
A Ranking-Based Cross-Entropy Loss for Early Classification of Time Series
为实现早期分类时间序列(ECTS),我们提出了一种新颖的排名约束集成方法(RCE)。该方法采用排名思想来整合早期性目标和分类目标。因此,我们给出了排名关系的数学描述。集合的排名由其元素间的关系构成。在此,我们利用两个元素的成对排名关系来对无序集合进行排序。RCE算法通过类别和时效性两个维度对时间序列进行排序,如图2所示。首先根据类别对时间序列进行排序——排序0和排序1分别代表脓毒症类别优先非脓毒症类别、以及非脓毒症类别优先脓毒症类别的两种排序方式。原创 2025-07-14 14:29:58 · 662 阅读 · 0 评论 -
Densely Knowledge-Aware Network for Multivariate Time Series Classification
XX提出了一个densely knowledge-aware network (DKN),构建了基于残差卷积网络与注意力网络的双塔蒸馏网络结构,用于提取局部与全局特征,并提升不同层的信息流动能力,实现低层级与高层级语义信息间的密集相互监督,帮助DKN挖掘rich regularizations and relationships hidden in the data。原创 2025-07-14 14:28:52 · 971 阅读 · 0 评论 -
Root Cause Analysis in Microservice Using Neural Granger Causal Discovery
对比+因果吗?有点意思原创 2025-03-31 16:51:52 · 1229 阅读 · 0 评论 -
Deep Time Series Anomaly Detection with Local Temporal Pattern Learning
感觉看点不多。原创 2025-03-26 11:57:33 · 346 阅读 · 0 评论 -
[特殊字符]️ Frequency-enhanced Comprehensive Dependency Attention for Time Series Anomaly Detection
恕我直言,看不下去。原创 2025-03-26 11:51:23 · 860 阅读 · 0 评论 -
Deep Embedded Clustering with Asymmetric Residual Autoencoder
出于为了解决AE中的梯度消失,是否可以使用残差网络或者dense net解决的心态,我搜到了这篇文章Deep Embedded Clustering with Asymmetric Residual Autoencoder。本文的亮点:使用了一个非对称的、残差的autoencoder来训练样本;将clustering融合入模型,解决end-to-end问题;非对称训练得到的AE更加适合clustering;因为将模型融合,导致AE的训练存在一些constraint(满足clu.原创 2021-10-09 19:52:59 · 578 阅读 · 0 评论