22.支持向量机—高斯核函数

本文详细介绍了高斯核函数在解决非线性决策边界问题中的作用,特别是在支持向量机(SVM)中的应用。通过引入高斯核函数,能够创建非线性的决策边界,避免了多项式模型的复杂性。文中讨论了核函数参数σ的影响,解释了如何选择地标以及地标对新特征的影响。此外,还阐述了SVM中的参数C和σ对模型性能的权衡,以及线性核函数的选择情况。高斯核函数使得SVM能够处理更复杂的分类问题,提高了模型的灵活性和预测能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要内容

  1. 高斯核函数的引入
  2. 高斯核函数详细介绍

一、高斯核函数的引入

1.1 非线性决策边界问题—常规方法(高级数的多项式模型)

  • 对于一个非线性决策边界问题,我们可以使用高级数的多项式模型 来解决无法用直线进行分隔的分类问题:

    在这里插入图片描述

  • 为了获得上图所示的判定边界,我们的模型可能是θ0+θ1x1+θ2x2+θ3x1x2+θ4x12+θ5x22+⋯{ {\theta }_{0}}+{ {\theta }_{1}}{ {x}_{1}}+{ {\theta }_{2}}{ {x}_{2}}+{ {\theta }_{3}}{ {x}_{1}}{ {x}_{2}}+{ {\theta }_{4}}x_{1}^{2}+{

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WuJiaYFN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值