图像篡改检测入门01 模式噪声估计算法
图像采集过程中,设备不可避免地要引入模式噪声,这是不同设备的特有属性,即使两个型号完全相同的设备,其模式噪声也会有所不同。模式噪声估计算法需要事先建立训练集,将已知相同型号的设备作为一类,利用去噪算法过滤出图像的“残余噪声”作为这一类图像的参考噪声。然后对比待检测图像的残余噪声和训练集中的各类参考噪声,从而确定设备的型号。Lukas[4]等人最早提出了模式噪声方法来识别图像的来源,文中对9种不同的设备进行了来源识别,识别率达到了100%
图像篡改被动取证 模式噪声估计算法
像素对光的不同敏感度引起的像素不均匀噪声
参考论文:LUKAS J, FRIDRICH J, GOLJAN M. Digital camera identification from sensor noise [J]. IEEE Transactions on Information Forensics & Security, 2006, 1(2): 205-14.
基本概念
- 噪点 :相片中突兀的聚焦点,灰度值明显有差异,成像质量差;
- 传感器噪声:
-
固定模式噪声(fixed-pattern noise,FPN):出现在图像固定位置的噪声,暗流造成。暗信号非均匀性( dark signal non uniformity,DSNU,暗电流噪声:传感器没暴露在光下收集的信号)和光响应非均匀性(photo response non uniformity, PRNU,由像素不均匀性引起:由于硅晶片的不均匀性和传感器对光的不同敏感度)。PRNU不受环境影响。
-
暂态噪音(temporal noise,TN):随时间变化的噪声
-
- EXIF 可交换图像文件中存放着有关数码相机和图像拍摄日期时间
- 空间域简称空域,又称图像空间(image space),指由图像像元组成的空间。在空域的处理就是在像素级的处理,通过傅立叶变换后,得到的是图像的频谱。表示图像的能量梯度。同理,时域函数通过傅立叶或者拉普拉斯变换就变成了频域函数。
- 频域:以 空间频率 为自变量描述图像的特征,可以将一幅图像像元值在空间上的变化分解为具有不同振幅、空间频率和相位的简振函数的线性叠加,图像中各种空间频率成分的组成和分布称为 图像频谱。低频:颜色变化缓慢。高频:相邻区域灰度相差大
- 空间域与频域可互相转换,对图像施行 二维离散傅立叶变换 或 小波变换 ,可以将图像由空间域转换到频域;通过 对应的反变换 又可转换回空间域图像,即人可以直接识别的图像。
- 图像信号的频率特性:
- 直流分量 表示预想的平均灰度
- 低频分量 代表了大面积背景区域和缓慢变化部分
- 高频分量 代表了它的边缘、细节、跳跃部分以及颗粒噪声
- 振幅 描述了图像灰度的亮度
- 相位 决定了图像是什么样子
- 截取频率的低频分量,对其作傅立叶反变换,得到的就是模糊后的图像,即 低通滤波
- 截取频率的高频分量,对其作傅立叶反变换,得到的就是锐化后的图像,即 高通滤波
- 图像的频率:灰度值变化剧烈程度的指标,是灰度在平面空间上的梯度。
- 小波域:图像矩阵可以看做是二维的信号,所谓的变换就是用两组小波系数(高通,低通两部分)对图像数据分别进行两次卷积,得到两部分,高通滤波后的高频部分对应连续小波变换的小波空间,低通滤波后的低频部分对应连续小波变换的尺度空间,然后再对变换后的低频部分做相同的两次变换,直到指定分辨率。对图像直接变换是把图像数据作为信号,对固定的某类小波,小波系数是一定的,不随图像的数据变化。小波系数是搞研究的人计算好的,应用的时候拿来用就是;
- FAR错误接受率是指将非目标判别为目标。
- FRR错误拒绝率是指将目标误识成非目标。
文章结构
1.解释相机内部噪声源的来源
相机工作原理
相机的核心为成像传感器。传感器分成很小的可寻址像素,其收集光子并转换成电压。随后在模数转换器采样成数字信号。拍摄的光景到达传感器之前会通过相机镜头、抗锯齿(模糊)过滤器、滤色器阵列CFA。CFA会阻挡光谱的特定部分,只允许每个像素检测一种特定颜色。
噪声来源
模式噪声是一种系统失真,拍摄多张照片,其成分会大致保持相同。模式噪声分为FPN和PRNU
其中,PRNU当中一部分是由于PNU像素不均匀性引起,另外一部分是由于灰尘颗粒和光学表面以及边角设置导致的低频分量,并不是我们所需要的。
以下非研究重点不予深究