FinGPT 研究

FinGPT通过微调预训练的LLMs以适应金融应用,降低了计算成本和适应金融数据的时间敏感性。利用LoRA减少参数数量,通过RLSP利用股票价格反馈进行强化学习,提升预测准确性。该模型提供了一个经济、灵活的框架,促进金融语言建模的个性化和实时更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大型语言模型(LLMS)向金融领域的转型整合带来了独特的复杂性和巨大的机遇。要应对高时间敏感性、动态金融景观以及金融数据中的低信噪比等挑战,就需要高效的解决方案。FinGPT通过利用预先存在的LLM并根据特定的金融应用对其进行微调,做出了创新性的回应。与BloombergGPT等模型相比,这种方法大大降低了适应成本和计算要求,为金融语言建模提供了一种更方便、更灵活、更经济的解决方案。因此,它可以实现一致的更新,以确保模型的准确性和相关性,这是动态和时间敏感的金融界的一个关键方面。

为什么是微调而不是重新训练

尽管BloombergGPT在金融方面的能力非常出色,但它的计算量非常大。它花了大约130万GPU小时进行培训,按AWScloud2.3美元的费率计算,相当于每次培训花费约300万美元。与BloombergGPT之类模型的高计算成本形成对比的是,FinGPT通过关注顶级开源LLMs的轻量级适配,提供了一个更易于访问的解决方案。适应费用大幅下降,估计每次培训不到300美元。这种方法确保了及时更新和适应性,特别是在动态金融领域。开源的FinGPT不仅提升了透明度,还允许用户定制,迎合了个性化金融咨询服务的兴起趋势。最终,FinGPT的经济高效、灵活的框架有可能让金融语言建模不再通用,并促进以用户为中心的金融服务。

通过低秩自适应(LoRA)进行微调

在FinGPT中,我们利用一个新颖的金融数据集对预训练的LLM进行微调。众所周知,高质量的标记数据是许多成功的LLMs(包括ChatGPT)的关键决定因素。然而,获得这样的顶级标记数据往往在时间和资源方面成本高昂,并且通常需要金融专业人士的专业知识。

如果我们的目标是利用LLMs分析与金融相关的文本数据并协助量化交易,那么利用市场固有的标注能力似乎是明智的选择。因此,我们使用每个新闻项目的相对股票价格变动百分比作为输出标签。我们根据新闻项目的情感将这些标签划分为三个类别:正面、负面和中性

在相应的提示工程步骤中,我们还提示模型从正面、负面和中性输出中选择一个。这种策略确保了预先训练信息的最佳利用。通过使用LLMs的Low-Rank Adaptation (LoRA) [Hu et al., 2021; Dettmers et al., 2023],我们设法将可训练参数的数量从61.7亿减少到仅仅367万。

通过强化学习对股价进行微调(RLSP)

同样地,我们可以将基于股票价格的强化学习(RLSP)替换为ChatGPT所使用的基于人类反馈的强化学习。这种替代的原因是,股票价格提供了一个可量化、客观的度量标准,反映了市场对新闻和事件的情绪。这使得它成为了训练模型的强大实时反馈机制。

强化学习(RL)允许模型通过与环境的交互和反馈学习。在RLSP的情况下,环境是股票市场,反馈以股票价格变化的形式出现。这种方法使FinGPT能够完善其对金融文本的理解和解释,提高其预测市场对各种金融事件的反应的能力。

通过将新闻情绪与相关股票的后续表现联系起来,RLSP为微调FinGPT提供了一种有效的方法。本质上,RLSP允许模型推断市场对不同新闻事件的反应,并相应地调整其理解和预测。

因此,将RLSP集成到FinGPT的微调过程中,提供了一个强大的工具来改善模型对金融市场的理解和预测准确性。通过使用实际股票价格变动作为反馈,我们直接利用市场智慧来使我们的模型更加有效。

端到端架构

image.png
整个框架分为五个层次

  • _Data source layer:确保全面的市场数据覆盖和时间敏感性问题 _The starting point of the FinGPT pipeline is the Data Source Layer, which orchestrates the acquisition of extensive financial data from a wide array of online sources. This layer ensures comprehensive market coverage by integrating data from news websites, social media platforms, financial statements, market trends, and more. The goal is to capture every nuance of the market, thereby addressing the inherent temporal sensitivity of financial data.
  • _Data engineering layer:为实时NLP数据处理做准备,处理金融数据中的高时间灵敏性和噪声问题 _This layer focuses on the realtime processing of NLP data to tackle the challenges of _high temporal sensitivity _and _low signal-to-noise ratio _inherent in financial data. It incorporates state-of-the-art NLP techniques to filter noise and highlight the most salient pieces of information.
  • _LLMs layer:关注于 一系列的微调方法论,减轻了金融数据自带的高度动态性,保证了模型的相关性和准确性 _Lying at the heart, it encompasses various fine-tuning methodologies, with a priority on lightweight adaptation, to keep the model updated and pertinent. By maintaining an updated model, FinGPT can deal with the highly dynamic nature of financial data, ensuring its responses are in sync with the current financial climate
  • _Application layer:实际应用和demo示例,_The final component of FinGPT is the Applications Layer, designed to demonstrate the practical applicability of FinGPT. It offers hands-on tutorials and demo applications for financial tasks, including roboadvisory services, quantitative trading, and low-code development. These practical demonstrations not only serve as a guide to potential users but also underscore the transformative potential of LLMs in finance.
作为CSDN开发的"C知道"AI助手,我很高兴为您介绍fingpt的安装方法。不过需要说明的是,"fingpt"这个名称似乎有些混淆,它可能是指某种基于GPT技术的应用或工具,但并不是一个广泛认知的标准产品。为了给您提供准确的指导,我将假设您指的是一个常见的基于GPT的AI应用或库。 安装fingpt的步骤可能如下: 1. 环境准备: 确保您的系统已经安装了Python(建议使用3.7及以上版本)。 2. 创建虚拟环境(可选但推荐): 使用命令 `python -m venv fingpt_env` 创建一个新的虚拟环境。 然后使用 `source fingpt_env/bin/activate`(Linux/Mac)或 `fingpt_env\Scripts\activate`(Windows)激活该环境。 3. 安装必要的依赖: 使用pip安装所需的Python包。通常可以使用命令: ``` pip install -r requirements.txt ``` (假设项目根目录下有一个requirements.txt文件列出了所有依赖) 4. 获取fingpt代码: 如果fingpt是一个开源项目,您可以使用git克隆仓库: ``` git clone https://github.com/your-username/fingpt.git ``` 或者直接从GitHub或其他代码托管平台下载ZIP文件并解压。 5. 安装fingpt包: 进入fingpt项目目录,然后使用pip安装: ``` cd fingpt pip install . ``` 或者如果您只是想进行开发,可以使用: ``` pip install -e . ``` 6. 配置: 根据项目的具体要求,您可能需要配置一些环境变量或创建配置文件。 7. 运行: 按照项目的文档,运行相应的命令启动fingpt服务或应用程序。 请注意,具体的安装步骤可能会因fingpt的实际定义而有所不同。如果您能提供更多关于fingpt的信息,我可以为您提供更加精确的指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值