大语言模型(Large Language Model)崛起后,开发人员只要借助大语言模型,完全可以做到现在大部分NLP工程师在做的事,比如文本分类、实体抽取、推理等。可以预见的是,随着LLM能力的不断提升,可能做的比NLP工程是都要好。
而Meta发布的SAM(Segment Anything Model)也让让CV走到尽头,SAM将Engineering的开箱即用做到了极致。在SAM问世之前,对于中下游的从业者来说,完成一个几乎没有学术意义的分割任务至少需要:1. 大量的图像标注工作 2. 算力说得过去的机器。而在SAM问世之后,几乎可以以零标注甚至是零代码的方式实现最基础的分割任务。而且未来会出现比SAM更强的算法和模型。
因此,未来可能也不会存在NLP工程师和CV算法工程师。
就像现在没有Office工程师一样。
LLM和其他开源算法,缩小了大厂、小厂之间的差距,让数据、算力都无法与大厂相比的中小型企业也有了机制创新的可能性。没有任何算法背景的开发人员能够尽量无缝、顺滑地对接起算法工作。
创意+工程能力(执行能力) 可以诞生伟大的产品。
因此,比特鹰接下来要做的就是利用LLM构建自己颠覆性的产品。
我们要做的就是,紧跟业界最新动态:开源项目动态、大公司产品动态、牛逼的创业公司创意,进行自己的产品研发。
目前深度学习领域,规模训练见顶了,但垂直训练正在蓬勃发展。
站在巨人肩膀上,可以事半功倍。
要关注的资源
ChatGPT应用开发指南
吴恩达的Prompt课程
微软的Deep Speed Chat
开源项目LangChain
langchain-ChatGLM:基于本地知识库的 ChatGLM 等大语言模型应用实现
ChatGLM-6B
开源项目ChatGLM-Tuning
闻达:一个LLM调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于于大模型的生成能力
HuggingGPT
用ChatGPT作为控制器,连接HuggingFace社区中的各种AI模型,完成多模态复杂任务
https://mp.weixin.qq.com/s/Uo2jgou3Wv0PRDETCpodfw
https://huggingface.co/spaces/microsoft/HuggingGPT
https://github.com/microsoft/JARVIS
Forever Voices
打造了AI女网红,AI乔布斯等产品
https://character.ai/
向量数据库
https://www.pinecone.io/
https://milvus.io/
https://zilliz.com/