概念
左乘行变换,右乘列变换
有三种初等矩阵:
- EijE_{ij}Eij 的一般形式: 先写出 E,然后直接对调i,j行即可
- EijE_{ij}Eij 在左,则对调矩阵的行
- EijE_{ij}Eij 在右,则对调矩阵的列
- Eij(k)E_{ij}(k)Eij(k) 的一般形式: 先写出E,然后将第j行i列元素改成 k
- Eij(k)E_{ij}(k)Eij(k) 在左: E 的第 i 行的 k 倍加到 j 行上
- Eij(k)E_{ij}(k)Eij(k) 在左: E 的第 j 列的 k 倍加到 i 列上
- Ei(k)E_{i}(k)Ei(k) 的一般形式: 先写出E,然后第i行对角线上的元素改成 k
- Ei(k)E_{i}(k)Ei(k) 在左,第i行*k倍
- Ei(k)E_{i}(k)Ei(k) 在右,第i列*k倍
第一和三种好理解,第二种不好理解,需要结合案例
E为3阶矩阵,第1列的1倍加到第2列: AE21(1)AE_{21}(1)AE21(1)
E为3阶矩阵,第3行的3倍加到第1行: E31(3)AE_{31}(3)AE31(3)A