Java集合框架ConcurrentHashMap详解

本文详细介绍了Java中的ConcurrentHashMap在不同版本下的数据结构、并发安全控制以及源码原理。1.7版本使用分段锁实现并发控制,而1.8版本改用分段锁+CAS,降低了锁的粒度,提高了并发性能。在扩容过程中,1.8版通过 CAS 和 synchronized 实现并发扩容,避免阻塞其他线程,保证了高效且线程安全的操作。此外,文章还深入解析了扩容过程中的细节,如迁移策略和节点结构转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据结构

ConcurrentHashMap的数据结构与HashMap基本类似,区别在于:

1、内部在数据写入时加了同步机制(分段锁)保证线程安全,读操作是无锁操作;

2、扩容时老数据的转移是并发执行的,这样扩容的效率更高。

二、并发安全控制

Java7 ConcurrentHashMap基于ReentrantLock实现分段锁.

sements数组中套了一个元素数据,设计的目的是为了分段加锁。

分段锁的效率要比整个hashMap加锁高。

直接给hashMap加锁,锁的粒度太粗了,性能较低。Semgents分段锁的粒度更小,只有put元素在semgents数组上产生冲突的时候才会加分段锁,其他位置的元素的get方法等不会被影响。

在这里插入图片描述
Java8中 ConcurrentHashMap基于分段锁+CAS保证线程安全,分段锁基于synchronized关键字实现;

在这里插入图片描述

三、源码原理分析

重要成员变量

ConcurrentHashMap拥有出色的性能, 在真正掌握内部结构时, 先要掌握比较重要的成员:

  • LOAD_FACTOR: 负载因子, 默认75%, 当table使用率达到75%时, 为减少table的hash碰撞, tabel长度将扩容一倍。负载因子计算: 元素总个数%table.lengh
  • TREEIFY_THRESHOLD: 默认8, 当链表长度达到8时, 将结构转变为红黑树
  • UNTREEIFY_THRESHOLD: 默认6, 红黑树转变为链表的阈值
  • MIN_TRANSFER_STRIDE: 默认16, table扩容时, 每个线程最少迁移table的槽位个数
  • MOVED: 值为-1, 当Node.hash为MOVED时, 代表着table正在扩容
  • TREEBIN, 置为-2, 代表此元素后接红黑树
  • nextTable: table迁移过程临时变量, 在迁移过程中将元素全部迁移到nextTable上
  • sizeCtl: 用来标志table初始化和扩容的,不同的取值代表着不同的含义:

0: table还没有被初始化
-1: table正在初始化
小于-1: 实际值为resizeStamp(n)<<RESIZE_STAMP_SHIFT+2, 表明table正在扩容
大于0: 初始化完成后, 代表table最大存放元素的个数, 默认为0.75*n

  • transferIndex: table容量从n扩到2n时, 是从索引n->1的元素开始迁移,transferIndex代表当前已经迁移的元素下标
  • ForwardingNode: 一个特殊的Node节点, 其hashcode=MOVED, 代表着此时table正在做扩容操作。扩容期间, 若table某个元素为null, 那么该元素设置为ForwardingNode, 当下个线程向这个元素插入数据时, 检查hashcode=MOVED, 就会帮着扩容

ConcurrentHashMap由三部分构成, table+链表+红黑树, 其中table是一个数组, 既然是数组, 必须要在使用时确定数组的大小, 当table存放的元素过多时, 就需要扩容, 以减少碰撞发生次数, 本文就讲解扩容的过程。扩容检查主要发生在插入元素(putVal())的过程。

  • 一个线程插完元素后, 检查table使用率, 若超过阈值, 调用transfer进行扩容
  • 一个线程插入数据时, 发现table对应元素的hash=MOVED, 那么调用helpTransfer()协助扩容

协助扩容helpTransfer

下面是协助扩容的过程:

在这里插入代码片

1.7 get方法

1.7的concurrentHashMap同步采用的是ReentrantLock.

get的时候需要进行两次hash,第一次定位到segements数组中的位置,第二次hash确定元素数组中的位置。
在这里插入图片描述

 1 V put(K key, int hash, V value, boolean onlyIfAbsent) { 
 2     lock(); 
 3     try { 
 4         int c = count; 
 5         if (c++ > threshold) // ensure capacity 
 6             rehash(); 
 7         HashEntry<K,V>[] tab = table; 
 8         int index = hash & (tab.length - 1); 
 9         HashEntry<K,V> first = tab[index]; 
10         HashEntry<K,V> e = first; 
11         while (e != null && (e.hash != hash || !key.equals(e.key))) 
12             e = e.next; 
13    
14         V oldValue; 
15         if (e != null) { 
16             oldValue = e.value; 
17             if (!onlyIfAbsent) 
18                 e.value = value; 
19         } 
20         else { 
21             oldValue = null; 
22             ++modCount; 
23             tab[index] = new HashEntry<K,V>(key, hash, first, value); 
24             count = c; // write-volatile 
25         } 
26         return oldValue; 
27     } finally { 
28         unlock(); 
29     } 
30 } 

现在1.7的使用的不是很多,我们重点来看1.8的源码。

1.8源码分析

put方法

/** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        // 这里要考虑并发场景,所以使用死循环
        for (Node<K,V>[] tab = table;;) { // CAS竞争失败的会再次进入这个循环
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable(); // 初始化数组
            // i = (n - 1) & hash) 计算出hash
            //  tabAt(Node<K,V>[] tab, int i) 方法用来获取数组上该索引位置上的元素
            // 如果获取到该数组位置上的元素是空
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            	// CAS设置元素,因为此时是多线程场景- 这和1.7中的一上来就竞争segements锁不一样,CAS的效率更高
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            // 如果数组的这个位置上已经有元素了,判断此时是否在进行扩容
            else if ((fh = f.hash) == MOVED)
            	// 如果当前线程发现hash表正在扩容,会帮助迁移【默认迁移16个槽位的数据】
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                // 对该数组位置上的对象加synchronized 【位置为null的时候不需要加锁】
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            // 构建链表的逻辑
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                // 链表中遍历元素
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    // 如果元素的key已经存在,覆盖旧值 
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                // 尾部插入
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        // 如果是红黑树
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }


 ==================================================================================
 private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        // CAS 初始化数组
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

1.8 put的时候锁住的是数组中某个元素的位置(如果有链表也锁了链表),而1.7中使用ReentrantLock锁住的是segments数组中的一个元素,而segments数组中的一个元素下面又挂着一个小hash表(小hash表中元素下可能还有链表),相当于一个segments数组元素中包括了多个元素,这样锁的粒度更大,并发度不如1.8。
在这里插入图片描述
在这里插入图片描述
协助扩容helpTransfer方法

 /**
     * Helps transfer if a resize is in progress.
     */
    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    	// table扩容
        Node<K,V>[] nextTab; int sc;
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            // 根据 length 得到一个标识符号
            int rs = resizeStamp(tab.length);
            while (nextTab == nextTable && table == tab &&
                   (sc = sizeCtl) < 0) {  //说明还在扩容
                //判断是否标志发生了变化|| 扩容结束了   
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                	//达到最大的帮助线程 || 判断扩容转移下标是否在调整(扩容结束)
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                // 将 sizeCtl + 1, (表示增加了一个线程帮助其扩容)    
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }

主要做了如下事情:

  • 检查是否扩容完成
  • 对sizeCtrl = sizeCtrl+1, 然后调用transfer()进行真正的扩容

扩容transfer

扩容的整体步骤就是新建一个nextTab, size是之前的2倍, 将table上的非空元素迁移到nextTab上面去。

/**
     * Moves and/or copies the nodes in each bin to new table. See
     * above for explanation.
     */
    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        	// subdivide range,每个线程最少迁移16个槽位,大的话,最多
            stride = MIN_TRANSFER_STRIDE; // subdivide range
         // initiating 才开始初始化新的nextTab   
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];  /扩容2倍
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;  //更新的转移下标
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        //是否能够向前推进到下一个周期
        boolean advance = true;
        // to ensure sweep before committing nextTab,完成状态,如果是,则结束此方法
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {  //取下一个周期
                int nextIndex, nextBound;
                //本线程处理的区间范围为[bound, i),范围还没有处理完成,那么就继续处理
                if (--i >= bound || finishing)
                    advance = false;
                 //目前处理到了这里(从大到小, 下线),开始找新的一轮的区间    
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                //这个条件改变的是transferIndex的值,从16变成了1
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          //nextBound 是这次迁移任务的边界,注意,是从后往前
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;  //一块区间最小桶的下标
                    i = nextIndex - 1;  //能够处理的最大桶的下标
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {  //每个迁移线程都能达到这里
                int sc;
                if (finishing) { //迁移完成
                    nextTable = null;
                    //直接把以前的table丢弃了,上面的MOVE等标志全部丢弃,使用新的
                    table = nextTab;
                    //扩大2n‐0.5n = 1.50n, 更新新的容量阈值
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                //表示当前线程迁移完成了
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                	//注意此时sc的值并不等于sizeCtl,上一步,sizeCtl=sizeCtl‐1了。这两个对象还是分割的
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            //如果对应位置为null, 则将ForwardingNode放在对应的地方
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)  //别的线程已经在处理了,再推进一个下标
                advance = true; // already processed,推动到下一个周期,仍然会检查i与bound是否结束
            else { // 说明位置上有值了
            	//需要加锁,防止再向里面放值,在放数据时,也会锁住。比如整个table正在迁移,还没有迁移到这个元素,
            	//另外一个线程像这个节点插入数据,此时迁移到这里了,会被阻塞住
                synchronized (f) {
                    if (tabAt(tab, i) == f) { //判断i下标和f是否相同
                        Node<K,V> ln, hn;  //高位桶, 低位桶
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            ///找到最后一个不和fn相同的节点
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;  n;//n为2^n, 取余后只能是2^n
                                //只要找到这,之后的取值都是一样的,下次循环时,就不用再循环后面的
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            //比如1,16,32,如果低位%16,那么肯定是0。
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                	//这样就把相同串的给串起来了
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                	//这样就把相同串的给串起来了,注意这里ln用法,第一个next为null,烦着串起来了。
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln); //反着给串起来了
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        // 如果是红黑树
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;  //也是高低节点
                            TreeNode<K,V> hi = null, hiTail = null;  //也是高低节点
                            int lc = 0, hc = 0;
                            //中序遍历红黑树
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) { //0的放低位
                                	//注意这里p.prev = loTail,每一个p都是下一个的prev
                                    if ((p.prev = loTail) == null)
                                        lo = p;  //把头记住
                                    else
                                        loTail.next = p;	//上一次的p的next是这次的p
                                    loTail = p;	//把上次p给记住
                                    ++lc;
                                }
                                else {  //高位
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;	//把尾记住
                                    ++hc;
                                }
                            }
                            //判断是否需要转化为树
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;  //如果没有高低的话,则部分为两个树
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

其中有两个变量需要了解下:

  • advance: 表示是否可以向下一个轮元素进行迁移
  • finishing: table所有元素是否迁移完成

大致做了如下事情:

  • 确定线程每轮迁移元素的个数stride, 比如进来一个线程, 确定扩容table下标为(a,b]之间元素, 下一个线程扩容(b,c]。这里对b-a或者c-b也是由最小值16限制的。也就是说每个线程最少扩容连续16个table的元素。而标志当前迁移的下标保存在transferIndex里面。
  • 检查nextTab是否完成初始化, 若没有的话, 说明是第一个迁移的线程, 先初始化nextTab, size是之前table的2倍
  • 进入while循环查找本轮迁移的table下标元素区间, 保存在(bound, i]中, 注意这里是半开半闭区间
  • 从i -> bound开始遍历table中每个元素, 这里是从大到小遍历的:
  1. 若该元素为空, 则向该元素标写入ForwardingNode, 然后检查下一个元素。 当别的线程向这个元素插入数据时, 根据这个标志符知道了table正在被别的线程迁移, 在putVal中就会调用helpTransfer帮着迁移。
  2. 若该元素的hash=MOVED, 代表次table正在处于迁移之中, 跳过。 按道理不会跑着这里的
  3. 否则说明该元素跟着的是一个链表或者是个红黑树结构, 若hash>0, 则说明是个链表, 若f instanceof TreeBin, 则说明是个红黑树结构。
  • 链表迁移原理如下: 遍历链表每个节点。 若节点的f.hash&n==0成立, 则将节点放在i, 否则, 则将节点放在n+i上面。

迁移前, 对该元素进行加锁。 遍历链表时, 这里使用lastRun变量, 保留的是上次hash的值, 假如整个链表全部节点f.hash&n==0, 那么第二次遍历, 只要找到lastRun的值, 那么认为之后的节点都是相同值, 减少了不必要的f.hash&n取值。遍历完所有的节点后, 此时形成了两条链表, ln存放的是f.hash&n=0的节点, hn存放的是非0的节点, 然后将ln存放在nextTable第i元素的位置, n+i存放在n+i的位置。

蓝色节点代表:f.hash&n==0, 绿色节点代表f.hash&n!=0。 最终蓝色的节点仍在存放在(0,n)范围里, 绿的节点存放在(n, 2n-1)的范围之内。

  • 迁移链表和红黑树的原理是一样的, 在红黑树中, 我们记录了每个红黑树的first(这个节点不是hash最小的节点)和每个节点的next, 根据这两个元素, 我们可以访问红黑树所有的元素, 红黑树此时也是一个链表, 红黑树和链表迁移的过程一样。红黑树根据迁移后拆分成了hn和ln, 根据链表长度确定链表是红黑树结构还是退化为了链表。

4.如何确定table所有元素迁移完成:

 //表示当前线程迁移完成了
 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc ‐ 1)) {
	 //注意此时sc的值并不等于sizeCtl,上一步,sizeCtl=sizeCtl‐1了。这两个对象还是分割的
 	if ((sc ‐ 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
 	return;
 	finishing = advance = true;
 	i = n; // recheck before commit
 }

第一个线程开始迁移时, 设置了sizeCtl= resizeStamp(n) <<RESIZE_STAMP_SHIFT+2, 此后每个新来帮助迁移的线程都会sizeCtl=sizeCtl+1, 完成迁移后,sizeCtl-1, 那么只要有一个线程还处于迁移状态, 那么sizeCtl> resizeStamp(n) <<RESIZE_STAMP_SHIFT+2一直成立, 当只有最后一个线程完成迁移之后, 等式两边才成立。可能大家会有疑问, 第一个线程并没有对sizeCtl=sizeCtl+1, 此时完成后再减一, 那不是不相等了吗, 注意这里, sizeCtl在减一前, 将值赋给了sc, 等式比较的是sc。

总结

table扩容过程就是将table元素迁移到新的table上, 在元素迁移时, 可以并发完成, 加快了迁移速度, 同时不至于阻塞线程。所有元素迁移完成后, 旧的table直接丢失, 直接使用新的table。

不用过于追求每行代码都理解,知道大概原理即可。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值