两种主要的模型保存和调用方法:pickle和joblib

文章介绍了Python中使用pickle和joblib库来保存和加载模型的方法。pickle适用于一般模型,而joblib在处理numpy结构数据和大型模型时更高效。保存模型后,只需将文件路径添加到Python环境变量,即可在其他计算机上导入模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:使用pickle保存和调用模型

pickle是Python中比较标准的一个保存和调用模型的库,可以使用pickle和open函数的连用,来将模型保存到本地(注意:使用open进行保存的这个文件是一个可以进行读取或者调用的模型)

import pickle

# 保存模型
pickle.dump(xxx, open("xxx.xxx","wb"))  
# open中往往使用w或者r作为读取的模式,但其实w和r只能用于文本文件
# 当希望导入的不是文本文件,而是模型本身的时候,使用wb和rb作为读取的模式,其中wb表示以二进制写入,rb表示以二进制读入

# 模型被保存到了哪里?
import sys
sys.path
# 能够看到Python的运行目录,第一行为模型保存的现有目录,下面为添加到环境变量的目录

导入模型也很简单:

loaded_model = pickle.load(open("xxx.xxx", "rb"))

二:使用joblib保存和调用模型

joblib是scipy生态系统中的一部分,它为Python提供了保存和调用管道和对象的功能,处理numpy结构的数据尤其高效,对于很大的数据集和巨大的模型非常有用,与pickle API非常相似

import joblib

joblib.dump(xxx, "xxx.xxx")

loaded_model = joblib.load("xxx.xxx")

在以上两种保存方法下,都可以找到保存下来的文件,将这些文件移动到任意计算机上的Python下的环境变量路径中(使用sys.path进行查看),则可以使用import来对模型进行调用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cheer-ego

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值