
机器学习与人工智能技术【1】
文章平均质量分 93
处理大规模数据:机器学习可以有效地处理大规模和复杂的数据集。它可以自动从数据中提取有用的特征和模式,帮助我们更好地理解和利用数据。自动化决策:机器学习算法可以自动从数据中学习,并根据学习到的知识做出决策。这使得机器学习在自动化决策和预测方面非常有用,例如在金融、医疗、交通等领域。机器学习可以自动化。
BinaryStarXin
专注于网络技术、各类计算机热门行业技术研究分享、嵌入式开发、人工智能、后端与前端等方面的技术知识文章分享,欢迎留言
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器人Python青少年编程开发实例【1.8】
本文介绍了基于TurnipBit开发板的两个项目实现:带小夜灯的电子时钟和会思考的避障车。第一部分详细说明了电子时钟的代码实现,包括光敏检测、LED控制和时钟显示功能,通过循环检测光线强弱自动切换小夜灯模式。第二部分完整展示了智能避障车的构建过程,从硬件组装到程序设计,重点讲解了超声波测距原理、电机驱动控制和算法逻辑优化。两个项目均提供了伪代码分析、具体实现代码和流程图,涉及MicroPython编程、传感器应用和硬件控制等知识点。通过模块化代码优化和功能函数提取,提高了程序的可读性和可维护性。原创 2025-05-26 23:51:30 · 1065 阅读 · 0 评论 -
机器人Python青少年编程开发实例【1.7】
本文介绍了制作带小夜灯的电子时钟的完整过程。主要包含以下内容:1)所需材料清单:包括开发板、时钟模块、光敏电阻等关键元件;2)基本原理:讲解电阻、光敏电阻等元器件的工作原理和使用方法;3)电路设计:详细说明各元件的连接方式,特别是光敏电阻的控制电路;4)程序设计:提供完整的时钟对时代码和光敏控制逻辑,实现白天显示时间、晚上自动切换小夜灯的功能。该项目结合了硬件搭建和软件编程,是一个实用的嵌入式系统开发案例。原创 2025-05-26 22:58:48 · 941 阅读 · 0 评论 -
机器人Python青少年编程开发实例【1.6】
本文介绍了使用TurnipBit开发板实现音乐播放器和储钱罐的两个项目。音乐播放器部分包含内置音乐播放和自定义音乐播放功能,通过按键控制曲目切换,并详细解析了音调、节拍与代码的转换方法。储钱罐项目则通过金属夹片检测硬币投入,使用引脚电平变化实现计数功能,并讨论了防抖动处理的软硬件解决方案。两个项目均提供完整的代码实现和原理分析,涵盖了循环控制、按键检测、引脚操作等核心编程概念,适合初学者学习嵌入式开发的基础应用。原创 2025-05-26 21:44:28 · 592 阅读 · 0 评论 -
机器人Python青少年编程开发实例【1.5】
本文介绍了如何使用TurnipBit开发板制作无线投票器和指南针。首先详细说明了投票器代码的分享方法,包括生成链接和密码设置等步骤。接着重点讲解了指南针的制作原理,通过磁敏传感器检测方向,并设定不同角度范围对应东、南、西、北方。文章还提供了拼插编程的具体操作步骤,包括变量设置、条件判断和循环结构等核心编程知识。最后简要提及了简易MP3播放器的实现思路。全文通过实例项目,帮助读者掌握传感器应用、逻辑运算和函数使用等编程要点。原创 2025-05-26 21:22:48 · 723 阅读 · 0 评论 -
机器人Python青少年编程开发实例【1.4】
本文介绍了使用TurnipBit开发板制作无线投票器的过程。通过两块开发板实现无线通信,一块作为接收端进行投票统计,另一块作为发送端供投票使用。文章详细讲解了Python函数定义、无线模块配置以及编程实现方法,包括发送端按键触发投票、接收端实时统计显示等功能。该项目展示了如何将编程知识与硬件结合,解决实际场景中的投票统计问题,同时提供了完整的流程图、拼插编程步骤和代码实现。原创 2025-05-26 20:59:00 · 692 阅读 · 0 评论 -
机器人Python青少年编程开发实例【1.3】
本文摘要: 文章分两部分介绍了编程基础知识与实践案例。第一部分讲解Python循环控制语句continue和break的区别与用法,通过数字显示示例说明两者的不同效果,并强调代码缩进规范。第二部分以"会走的机器人"和"掷骰子游戏"两个案例展开实践教学:1)详细说明如何通过图像拼接创建机器人动画效果,包括动作分解、循环控制和中断机制;2)完整实现掷骰子游戏,涵盖随机数生成、按键状态检测和条件判断等核心编程概念。两个案例均配套流程图、伪代码和完整实现步骤,既介绍了拼插式可原创 2025-05-26 20:43:37 · 912 阅读 · 0 评论 -
机器人Python青少年编程开发实例【1.2】
本文介绍了如何利用TurnipBit开发板制作加法计算器和会走的机器人。主要内容包括:1. 加法计算器的实现:通过定义变量、赋值和数据类型转换,完成23+12的计算并在LED点阵上显示结果;2. 编程基础:详细讲解变量、数据类型(字符串、布尔、整数等)、循环结构(for和while循环)等核心概念;3. 机器人动画原理:利用"视觉暂留"效应,通过循环控制LED点阵显示实现机器人行走动画。文中提供了详细的代码示例和操作步骤,适合初学者学习基础编程和硬件开发。所需器材仅需TurnipBit开原创 2025-05-24 18:01:41 · 669 阅读 · 0 评论 -
机器人Python青少年编程开发实例【1.1】
本文主要介绍了编程中的流程图绘制方法和倒计时器的实现过程。首先讲解了流程图的概念和作用,通过电灯故障排查示例展示了流程图的应用。接着详细阐述了如何用TurnipBit开发板实现数字显示功能,包括滚动显示和静态显示两种方式,并介绍了字符与数字的区别。然后重点讲解了倒计时器的制作过程,从流程图设计到代码实现,包括数字显示和时间间隔控制。文中还穿插介绍了二进制基础知识、运算规则及进制转换方法。最后总结了拼插编程和代码编程的知识要点,为后续编程学习打下基础。原创 2025-05-24 17:52:36 · 818 阅读 · 0 评论 -
机器人Python青少年编程开发实例【1.0】
《TurnipBit青少年编程入门指南》摘要:TurnipBit是一款基于microbit的青少年编程学习开发板,配备蓝牙、传感器、LED点阵等模块,支持拼插式编程和Python代码编程。本书通过"HelloWorld"等实例教学,引导初学者从图形化编程过渡到Python语言学习,并详细介绍MicroPython硬件开发原理及开发板类型。以广告牌制作、机器人控制等趣味项目为载体,帮助青少年掌握编程基础概念,培养计算思维。全书结合实践操作,配有详细步骤图示,适合零基础学习者入门硬件编程。原创 2025-05-24 15:52:10 · 1064 阅读 · 0 评论 -
强化学习与 PyTorch【1.】
为了保证估值计算的有效性,蒙特卡罗法会使用更适合自己的估值方法。蒙特卡罗法有两种估值方法,分别是 First-Visit Monte-Carlo Policy Evaluation( 首次访问蒙特卡罗策略估值) 和 EveryVisit Monte-Carlo Policy Evaluation( 每次访问蒙特卡罗策略估值)。对任意状态 𝑠𝑠 来说,如果在一个完整的 Episode 中第一次碰到它,就对计数器 𝑁𝑁(𝑠𝑠) 进行加1 的操作。 当然,在一开始, 所有状态的 𝑁𝑁(𝑠𝑠)原创 2025-04-06 19:24:55 · 759 阅读 · 0 评论 -
强化学习与 PyTorch【1.5】
通过类似于递归求解的方式,逐层估算, 如果每一层的估算都是准确的,就能迭代向上传递, 把上面各层的各个状态的值估算准确。节点位置越靠下,邻近时间终点的位置越近,计算的代价就越小( 节点位置越靠上,就表示距离开始的时间越长,在计算估值的时候要参考的时间就更长一些)。也就是说,如果有一个动作“力压群雄”,比其他的动作都要好, 那么, 上一层的 𝑠𝑠 的估值,就可以考虑只做这一个动作, 并以这个前提进行迭代更新。𝜃𝜃 的最大值是 𝜋𝜋, 𝑥𝑥 的最大值是 𝑑𝑑2,这相当于实验中的全部事件的分布原创 2025-04-06 19:08:08 · 954 阅读 · 0 评论 -
强化学习与 PyTorch【1.4】
有关策略优化, 在本节中只介绍策略迭代( Policy Iteration)。策略迭代操作起来比较简单, 大致过程如下。以某种策略开始在环境中做动作, 就像我们试着执行那个以“五五开” 的概率打伞的策略一样。在这个时候, 会得到相应的 𝑣𝑣𝜋𝜋(𝑠𝑠), 当然, 也可以得到相应的 𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎)。在一个确定的策略下,得到 𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) 的值。只要能得到这个值,就一定能在确定的状态 𝑠𝑠的输入下,从 𝑞𝑞𝜋𝜋(𝑠𝑠,𝑎𝑎原创 2025-04-06 17:09:27 · 529 阅读 · 0 评论 -
强化学习与 PyTorch【1.3】
策略通常用待定系数来描述。如果不方便用待定系数来直接描述一个策略, 有没有其他的办法呢? 也是有的, 就是本节要介绍的间接法。在某种程度上, 间接法似乎比直接法更容易理解—— 𝑎𝑎 = 𝜋𝜋(𝑠𝑠|𝜃𝜃) 本身就是一种策略, 这种策略实际上在做什么呢?应该说, 在做如图 2-1 所示的动作搜索与转移。 也就是说, 当机器人所处的状态为某个状态的时候,选择输出一个动作 𝑎𝑎, 然后迁移到下一个状态 𝑠𝑠。 那么问题来了: 哪个动作 𝑎𝑎 更好?有一个非常自然的思路: 哪个状态更好,原创 2025-04-06 00:02:42 · 1128 阅读 · 0 评论 -
强化学习与 PyTorch【1.2】
在第 1 章中, 除了 Agent、 Environment、 Observation、 State、 Action、 Reward 这些词, 我还提到了一个词——策略( Policy)。我们应该如何理解机器人行为范畴内的策略呢?一般用这样一个表达式来描述: 𝑎𝑎 = 𝜋𝜋(𝑠𝑠).这里的 𝑎𝑎 指的是动作, 𝑠𝑠 指的是状态, 函数 𝜋𝜋(跟圆周率没有半点关系) 就是用来描述策略的。从形式上看,策略就像一个函数, 只要输入一个状态 𝑠𝑠, 就输出一个动作 𝑎𝑎。原创 2025-04-05 22:44:52 · 654 阅读 · 0 评论 -
强化学习与 PyTorch【1.1】
在 1.2.1 节中, 我们对一个简单的例子进行了讨论。 我只是为了说明一个问题: 虽然强化学习是一种用于解决贯序决策问题的方法,但并不是所有问题都必须借助这种高深的手段才能获解。例如, 在 1.2.1 节那种层级有限且树杈上的权重(行进成本和行进时间)清晰的场景中, 采用普通的树遍历方法足以解决问题。 如果不知道整棵树的层级、 分叉和每个树杈的权重,是没有办法用直接遍历的方法得到一个完整路径的行进策略的。这个时候, 强化学习就可以派上用场了。 按照最朴素的思路,似乎应该想尽办法来构造这样一棵树,然后把问题原创 2025-04-05 21:28:16 · 896 阅读 · 0 评论 -
强化学习与 PyTorch【1.0】
其实,在本书的开头就给人工智能下定义是不合适的, 因为定义下得不好, 很可能会误导读者。但是, 对人工智能的定义没有基本的认识, 也是一件很麻烦的事情,因为很可能没过多久就会有读者开始纠结于“这种人工智能够不够智能”“这个东西配不配叫人工智能” 这样基本的而充满争议的问题了。需要注意的是,机器学习也好,人工智能也罢,这两个词汇本身就在无形中给人一种误导。它们让人们觉得, 机器是自己在学习的, 由人制造出来的这个“智能”的东西自己有分析、 思考、进化的能力。原创 2025-04-05 20:11:18 · 940 阅读 · 0 评论 -
多传感器编队目标跟踪技术【1.1】
航迹起始是编队目标跟踪中需要解决的首要问题。传统的目标航迹起始技术和现有的编队目标航迹起始技术均难以实现多传感器探测时编队内目标的精确航迹起始,为弥补上述不足,本章首先在 2.2 节中研究单传感器编队目标航迹起始技术,基于航迹起始阶段编队内各目标相对位置的缓慢漂移特性[1,2],提出基于相对位置矢量的编队目标灰色航迹起始(Formation Targets Gray Track Initiation Algorithm Based on Relative Position Vector:RPV-FTGTI)原创 2025-03-21 22:30:08 · 613 阅读 · 0 评论 -
多传感器编队目标跟踪技术【1.0】
在航迹维持方面,国内外学者提出了多种算法,如重心群跟踪算法[7,33],编队群跟踪算法[4,5,35~38],基于 JPDA[39]、MHT[6]、粒子滤波[40]、贝叶斯递推[41]等传统数据互联方法[54~60]的编队目标跟踪算法,基于遗传算法[42]、动态网络[43]、广义 Janossy 量测密度方程[44]、PHDF[45]的编队目标跟踪算法等,这些算法部分解决了编队整体和编队内目标的跟踪问题,但前提大多为探测系统可完全分辨编队内目标,而实际工程应用中,编队目标会存在部分可辨的情况。原创 2025-03-19 23:49:35 · 729 阅读 · 0 评论 -
SVM优缺点
SVM优缺点优点有严格的数学理论支持,可解释性强,不依靠统计方法,从而简化了通常的分类和回归问题;能找出对任务至关重要的关键样本(即:支持向量);采用核技巧之后,可以处理非线性分类/回归任务;最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。缺点训练时间长。当采用SMO 算法时,由于每次都需要挑选一对参数,因此时间复杂度为$O(N^2)$ ,其中 $N$ 为训练样本的数量;原创 2023-03-26 00:32:23 · 127 阅读 · 0 评论 -
机器学习算法(五):基于企鹅数据集的决策树分类预测
决策树是一种常见的分类模型,在金融风控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如在婚恋市场中,女方通常会先询问男方是否有房产,如果有房产再了解是否有车产,如果有车产再看是否有稳定工作……最后得出是否要深入了解的判断。由于决策树模型中自变量与因变量的非线性关系以及决策树简单的计算方法,使得它成为集成学习中最为广泛使用的基模型。梯度提升树(GBDT),XGBoost以及LightGBM等先进的集成模型。原创 2023-03-26 00:22:55 · 2389 阅读 · 0 评论