YOLOv11改进策略【卷积层】| SAConv 可切换的空洞卷积 二次创新C3k2

一、本文介绍

本文记录的是利用SAConv优化YOLOv11的目标检测网络模型空洞卷积是一种在不增加参数量和计算量的情况下,通过在卷积核元素之间插入空洞来扩大滤波器视野的技术。并且为了使模型能够适应不同尺度的目标,本文利用SAConv将不同空洞率卷积结果进行结合,来获取更全面的特征表示,实现涨点。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### YOLOv11 中 C3k2 改进的实现方法 #### 背景介绍 YOLOv11 是一种基于卷积神经网络的目标检测框架,其性能可以通过引入新的模块或结构进一步提升。C3k2_EffectiveSE 和 SAconv 模块是两种常见的改进方案[^1]。 --- #### C3k2_EffectiveSE 的集成方式 C3k2_EffectiveSE 结合了 EfficientNet 的 SE(Squeeze-and-Excitation)机制以及优化后的卷积操作。以下是具体实现方法: 1. **定义 C3k2_EffectiveSE 模块** 需要在模型架构中新增一个名为 `C3k2_EffectiveSE` 的层。该层通过调整通道注意力来增强特征表达能力。 ```python import torch.nn as nn class C3k2_EffectiveSE(nn.Module): def __init__(self, in_channels, out_channels): super(C3k2_EffectiveSE, self).__init__() reduction_ratio = 4 # Squeeze and Excitation Layer self.se_layer = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1), nn.ReLU(), nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1), nn.Sigmoid() ) def forward(self, x): se_weights = self.se_layer(x) return x * se_weights ``` 2. **替换原有 C3 层** 在 YOLOv11 的 backbone 或 neck 部分找到原有的 C3 卷积模块,并将其替换为上述自定义的 `C3k2_EffectiveSE` 模块。 --- #### 使用 SAConv 进一步优化 SAConv(Spatial Attention Convolutional Module)是一种空间注意力机制,能够显著提高目标检测的效果。以下是其实现细节: 1. **定义 SAConv 模块** 下面是一个简单的 SAConv 定义示例: ```python class SAConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super(SAConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding) self.spatial_attention = SpatialAttention() def forward(self, x): conv_out = self.conv(x) attention_map = self.spatial_attention(conv_out) return conv_out * attention_map class SpatialAttention(nn.Module): def __init__(self): super(SpatialAttention, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3) def forward(self, x): avg_pool = torch.mean(x, dim=1, keepdim=True) max_pool, _ = torch.max(x, dim=1, keepdim=True) pool = torch.cat([avg_pool, max_pool], dim=1) attention_map = torch.sigmoid(self.conv(pool)) return attention_map ``` 2. **替换标准卷积层** 找到 YOLOv11 架构中的所有标准卷积层,并逐步替换成上述定义好的 `SAConv` 模块[^2]。 --- #### 整体流程总结 为了完成对 YOLOv11 的 C3k2 改进并加入 SAConv 模块,可以按照以下逻辑进行开发: - 替换原始 C3 层为带有 SE 注意力机制的新模块; - 将传统卷积层升级为支持空间注意力的 SAConv 模块; - 对整个网络重新训练以适应新架构带来的变化。 --- ### 示例代码片段 下面展示了一个完整的 Backbone 修改案例,其中包含了 C3k2_EffectiveSE 和 SAConv 的应用: ```python class ModifiedBackbone(nn.Module): def __init__(self, base_model): super(ModifiedBackbone, self).__init__() # 原始骨干网加载 self.base_model = base_model # 添加 C3k2_EffectiveSE 到指定位置 self.c3k2_effective_se = C3k2_EffectiveSE(base_model.out_channels, base_model.out_channels) # 替换部分卷积层SAConv self.sa_conv_1 = SAConv(base_model.out_channels, base_model.out_channels) def forward(self, x): x = self.base_model(x) x = self.c3k2_effective_se(x) x = self.sa_conv_1(x) return x ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值