自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Limiiiing的博客

带你轻松学会YOLO。Learn YOLO easily, use YOLO effortlessly!

  • 博客(1078)
  • 资源 (2)
  • 收藏
  • 关注

原创 《多模态融合改进》目录一览 | 专栏介绍 :全网 第一份 完整的多模态改进教程,提供《多模态模型改进完整项目包》-开箱即用

在大家订阅专栏后,便可获得多模态模型改进完整项目包-开箱即用,方便简单

2025-04-15 13:31:46 3637 8

原创 YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣ 什么!不知道如何改进模型⁉️ 本专栏所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手。4️⃣ 团队内发表数篇SCI论

2025-03-10 22:00:24 9064 43

原创 YOLO训练/写作脚本目录一览 | 涉及标签格式转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件

在大家购买专栏后,便可获得全部的脚本文件。在获取到文件后,只需按照将程序放在个人项目中即可一键运行。

2024-12-30 16:02:54 1953 2

原创 YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-24。项目介绍在大家购买专栏后,加入学

2024-12-24 13:26:10 6502 3

原创 RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-4。项目介绍在大家购买专栏后,加入学习

2024-12-03 20:39:23 12311 6

原创 YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如今各种网络模型更新迭代越来越快,计算机视觉相关的文章也越来越多,多到一些普通,通用的改进点无法达到发表的要求。本专栏正是解决这个问题!如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-10-11 15:10:44 29720 173

原创 YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-10-11 12:33:51 7480 4

原创 YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-09-20 15:24:43 3447 2

原创 YOLOv10改进策略【卷积层】| CVPR 2025:动态双曲正切(Dynamic Tanh,DyT)模块,维持模型性能与训练稳定性

本文记录的是利用模块优化的目标检测网络模型。DyT(Dynamic Tanh,动态双曲正切模块) 的设计旨在,替代归一化层,在无需计算激活统计量的情况下实现对极端值的压缩和输入的动态缩放。本文将深入研究的原理,并将其应用到中,通过以元素级操作替换归一化层、保留非线性压缩特性,维持模型性能与训练稳定性。Transformers without Normalization归一化层在现代神经网络中应用广泛,被视为训练深度网络的关键组件。然而,研究发现Transformer中的层归一化(LN)层映射输入到输出的曲线

2025-08-05 11:04:04 3

原创 YOLOv11改进策略【卷积层】| CVPR 2025:动态双曲正切(Dynamic Tanh,DyT)模块,维持模型性能与训练稳定性

本文记录的是利用模块优化的目标检测网络模型。DyT(Dynamic Tanh,动态双曲正切模块) 的设计旨在,替代归一化层,在无需计算激活统计量的情况下实现对极端值的压缩和输入的动态缩放。本文将深入研究的原理,并将其应用到中,通过以元素级操作替换归一化层、保留非线性压缩特性,维持模型性能与训练稳定性。Transformers without Normalization归一化层在现代神经网络中应用广泛,被视为训练深度网络的关键组件。然而,研究发现Transformer中的层归一化(LN)层映射输入到输出的曲线

2025-08-04 14:55:10 126

原创 YOLOv8改进策略【YOLO和Mamba】| CVPR 2025:EfficientViM 压缩隐藏状态空间进行通道混合、单头设计减少内存操作,提升目标检测效率与精度

本文记录的是利用模块优化的目标检测网络模型。EfficientViM Block(基于隐藏状态混合器的状态空间对偶性模块) 的设计旨在,提升特征提取效率,同时兼顾全局依赖捕捉与局部细节保留。本文将深入研究的原理,并将其应用到中,通过重构特征提取流程、减少内存绑定操作、融合多阶段特征,增强模型在资源受限环境下的检测性能与速度。EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space DualityEfficie

2025-08-04 13:19:15 82

原创 RT-DETR改进策略【卷积层】| CVPR 2024:LEGM 局部特征嵌入全局特征提取 适用于低质量图像特征提取任务

本文记录的是利用模块优化的目标检测网络模型。LEGM(Local Feature-Embedded Global Feature Extraction Module,局部特征嵌入的全局特征提取模块) 的设计旨在,增强特征表示能力,同时捕捉局部细节与全局依赖。本文将深入研究的原理,并将其应用到中,通过融合局部与全局特征、引入深度信息,增强特征表示能力。Depth Information Assisted Collaborative Mutual Promotion Network for Single Ima

2025-08-03 21:27:51 12

原创 YOLOv12改进策略【卷积层】| CVPR 2024:LEGM 局部特征嵌入全局特征提取 适用于低质量图像特征提取任务

本文记录的是利用模块优化的目标检测网络模型。LEGM(Local Feature-Embedded Global Feature Extraction Module,局部特征嵌入的全局特征提取模块) 的设计旨在,增强特征表示能力,同时捕捉局部细节与全局依赖。本文将深入研究的原理,并将其应用到中,通过融合局部与全局特征、引入深度信息,增强特征表示能力。Depth Information Assisted Collaborative Mutual Promotion Network for Single Ima

2025-08-03 20:19:25 124

原创 YOLOv10改进策略【卷积层】| CVPR 2024:LEGM 局部特征嵌入全局特征提取 适用于低质量图像特征提取任务

本文记录的是利用模块优化的目标检测网络模型。LEGM(Local Feature-Embedded Global Feature Extraction Module,局部特征嵌入的全局特征提取模块) 的设计旨在,增强特征表示能力,同时捕捉局部细节与全局依赖。本文将深入研究的原理,并将其应用到中,通过融合局部与全局特征、引入深度信息,增强特征表示能力。Depth Information Assisted Collaborative Mutual Promotion Network for Single Ima

2025-08-03 19:59:02 7

原创 论文翻译:Wavelet Convolutions for Large Receptive Fields

近年来,人们尝试增加卷积神经网络(CNNs)的核大小,以模仿视觉Transformer(ViTs)自注意力模块的全局感受野。然而,这种方法很快达到了上限,在实现全局感受野之前就已性能饱和。在这项工作中,我们证明了通过利用小波变换(WT),实际上可以获得非常大的感受野,而不会遭受过参数化问题。例如,对于k×k的感受野,所提出方法中的可训练参数数量仅随k呈对数增长。所提出的层称为WTConv,可以直接替代现有架构中的深度可分离卷积,产生有效的多频响应,并且随感受野大小优雅地扩展。

2025-08-02 17:10:30 958

原创 【论文翻译】ACDF-YOLO: Attentive and Cross-Differential Fusion Network for Multimodal Remote Sensing Objec

遥感图像中的目标检测在广泛的应用中受到了显著关注。然而,传统的单模态遥感图像,无论是基于可见光还是红外,都存在不可忽视的局限性。可见光图像易受环境光照条件影响,其检测精度会大幅降低。红外图像往往缺乏丰富的纹理信息,导致目标识别和分类过程中误检率较高。为应对这些挑战,我们提出了一种新颖的多模态融合网络检测模型,名为ACDF-YOLO。该模型基于轻量级且高效的YOLOv5结构,旨在融合可见光和红外图像的协同数据,从而提升遥感图像中目标识别的效率。

2025-08-02 17:09:30 981

原创 【YOLOv8多模态融合改进】| PR 2024 ICAFusion中的DMFF,双模态特征融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖

本文记录的是利用ICAFusion中的DMFF模块改进YOLOv8的多模态融合部分。模块通过双交叉注意力引导的迭代特征融合过程,实现了对RGB与热模态全局互补信息的高效聚合。将其应用于的改进过程中,针对多光谱检测中模态错位与长距离依赖建模不足的问题,通过空间特征压缩、交叉模态增强及迭代学习策略,缓解传统CNN局部交互局限导致的性能下降,提升复杂场景下的目标识别精度。ICAFusion: Iterative Cross-Attention Guided Feature Fusion for Multispec

2025-08-02 16:54:51 11

原创 【YOLOv10多模态融合改进】| PR 2024 ICAFusion中的DMFF,双模态特征融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖

本文记录的是利用ICAFusion中的DMFF模块改进YOLOv10的多模态融合部分。模块通过双交叉注意力引导的迭代特征融合过程,实现了对RGB与热模态全局互补信息的高效聚合。将其应用于的改进过程中,针对多光谱检测中模态错位与长距离依赖建模不足的问题,通过空间特征压缩、交叉模态增强及迭代学习策略,缓解传统CNN局部交互局限导致的性能下降,提升复杂场景下的目标识别精度。ICAFusion: Iterative Cross-Attention Guided Feature Fusion for Multispe

2025-08-02 16:54:34 7

原创 【RT-DETR多模态融合改进】| PR 2024 ICAFusion中的DMFF,双模态特征融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖

本文记录的是利用ICAFusion中的DMFF模块改进RT-DETR的多模态融合部分。模块通过双交叉注意力引导的迭代特征融合过程,实现了对RGB与热模态全局互补信息的高效聚合。将其应用于的改进过程中,针对多光谱检测中模态错位与长距离依赖建模不足的问题,通过空间特征压缩、交叉模态增强及迭代学习策略,缓解传统CNN局部交互局限导致的性能下降,提升复杂场景下的目标识别精度。ICAFusion: Iterative Cross-Attention Guided Feature Fusion for Multispe

2025-08-01 16:25:29 289

原创 【YOLOv11多模态融合改进】| PR 2024 ICAFusion中的DMFF,双模态特征融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖

本文记录的是利用ICAFusion中的DMFF模块改进YOLOv11的多模态融合部分。模块通过双交叉注意力引导的迭代特征融合过程,实现了对RGB与热模态全局互补信息的高效聚合。将其应用于的改进过程中,针对多光谱检测中模态错位与长距离依赖建模不足的问题,通过空间特征压缩、交叉模态增强及迭代学习策略,缓解传统CNN局部交互局限导致的性能下降,提升复杂场景下的目标识别精度。ICAFusion: Iterative Cross-Attention Guided Feature Fusion for Multispe

2025-08-01 16:24:54 35

原创 YOLOv8改进策略【卷积层】| CVPR 2024:LEGM 局部特征嵌入全局特征提取 适用于低质量图像特征提取任务

本文记录的是利用模块优化的目标检测网络模型。LEGM(Local Feature-Embedded Global Feature Extraction Module,局部特征嵌入的全局特征提取模块) 的设计旨在,增强特征表示能力,同时捕捉局部细节与全局依赖。本文将深入研究的原理,并将其应用到中,通过融合局部与全局特征、引入深度信息,增强特征表示能力。Depth Information Assisted Collaborative Mutual Promotion Network for Single Ima

2025-07-31 22:01:51 137

原创 YOLOv11改进策略【卷积层】| CVPR 2024:LEGM 局部特征嵌入全局特征提取 适用于低质量图像特征提取任务

本文记录的是利用模块优化的目标检测网络模型。LEGM(Local Feature-Embedded Global Feature Extraction Module,局部特征嵌入的全局特征提取模块) 的设计旨在,增强特征表示能力,同时捕捉局部细节与全局依赖。本文将深入研究的原理,并将其应用到中,通过融合局部与全局特征、引入深度信息,增强特征表示能力。Depth Information Assisted Collaborative Mutual Promotion Network for Single Ima

2025-07-31 20:40:30 171

原创 【YOLOv12多模态融合改进】| PR 2024 ICAFusion中的DMFF,双模态特征融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖

本文记录的是利用ICAFusion中的DMFF模块改进YOLOv12的多模态融合部分。模块通过双交叉注意力引导的迭代特征融合过程,实现了对RGB与热模态全局互补信息的高效聚合。将其应用于的改进过程中,针对多光谱检测中模态错位与长距离依赖建模不足的问题,通过空间特征压缩、交叉模态增强及迭代学习策略,缓解传统CNN局部交互局限导致的性能下降,提升复杂场景下的目标识别精度。ICAFusion: Iterative Cross-Attention Guided Feature Fusion for Multispe

2025-07-31 20:37:06 442

原创 RT-DETR改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰

本文记录的是利用SDFM 模块改进 RT-DETR 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion

2025-07-11 08:33:28 130 1

原创 YOLOv12改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系

本文记录的是利用PSFM 模块改进 YOLOv12 的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity

2025-07-10 08:40:14 548

原创 YOLOv11改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰

本文记录的是利用SDFM 模块改进 YOLOv11 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion

2025-07-10 08:39:44 275

原创 YOLOv8改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰

本文记录的是利用SDFM 模块改进 YOLOv8 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion

2025-07-09 08:30:35 50

原创 YOLOv10改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰

本文记录的是利用SDFM 模块改进 YOLOv10 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion

2025-07-09 08:30:19 50 1

原创 【RT-DETR多模态融合改进】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余

本文记录的是利用DCMPNet中的 MFM 模块改进 RT-DETR 的多模态融合部分。模块通过动态调制特征融合过程,实现了对多尺度、跨层级特征的智能聚合。将其应用于的改进过程中,针对目标检测中边界特征与语义信息的互补性需求,缓解网络中浅层细节与深层语义融合不足的问题。Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing在图像去雾网络中,不同层级和类型的特征包含着互补的信息(如浅

2025-07-08 08:35:42 129

原创 RT-DETR改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系

本文记录的是利用PSFM 模块改进 RT-DETR 的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity

2025-07-08 08:29:40 290 1

原创 【RT-DETR多模态融合改进】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度融合精度

本文记录的是利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块改进 RT-DETR的多模态融合部分。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scal

2025-07-07 16:49:02 293

原创 【RT-DETR多模态融合改进】| Arxiv 2024 DEYOLO:利用双增强机制和双向解耦聚焦模块,构建跨模态特征融合与单模态优化的完整框架

本文记录的是利用DEYOLO中的多模态融合模块改进 RT-DETR 的多模态融合部分。针对RGB和红外多模态目标检测任务设计了双特征增强机制,通过DECA(双语义增强通道权重分配模块)、DEPA(双空间增强像素权重分配模块)和双向解耦聚焦模块(Bi-direction Decoupled Focus)实现跨模态特征融合与单模态特征优化,有效解决多模态检测中的信息互补与干扰抑制问题。DEYOLO: Dual-Feature-Enhancement YOLO for Cross-Modality Object

2025-07-07 08:27:44 614

原创 【RT-DETR多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测

本文改进双HS-FPN颈部结构,融合RT-DETR中的多模态特征,以优化目标检测网络模型。借助通道注意力机制及独特的多尺度融合策略,有效应对目标尺寸差异及特征稀缺问题。针对不同模态,其利用高级特征筛选低级特征,增强特征表达,助力模型精准定位和识别目标,减少因尺度变化及特征不足导致的检测误差,提升在多模态检测任务中的准确性与稳定性。Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for A

2025-07-06 11:30:00 75

原创 【RT-DETR多模态融合改进】| 利用 Deformable Attention Transformer 可变形注意力 二次改进CGA Fusion 动态关注不同模态间的目标区域

本文记录的是利用DAT 模块改进 RT-DETR 的多模态融合部分。主要讲解如何利用一些现有的模块二次改进多模态的融合部分。全称为,其作用在于通过可变形注意力机制,同时包含了数据依赖的注意力模式,克服了常见注意力方法存在的内存计算成本高、受无关区域影响以及数据不可知等问题。相比一些只提供固定注意力模式的方法,能更好地聚焦于不同模态间的相关区域并捕捉更有信息的特征。本文将其用于模块中并进行二次创新,更好地突出不同模态的重要特征,提升模型性能。Vision Transformer with Deformable

2025-07-06 10:00:00 58

原创 【RT-DETR多模态融合改进】| CAFM:通道 - 空间交叉注意力机制 | 动态捕捉跨模态特征的重要性,抑制冗余信息

本文记录的是利用 CAFM 模块改进 RT-DETR 的多模态目标检测网络模型。通过在特征融合阶段引入通道 - 空间交叉注意力机制,动态生成跨子网特征融合权重。该模块可自适应捕捉像素级与超像素级特征的语义关联,抑制无关背景干扰,实现高层语义与空间结构的深度交互与互补增强,为检测任务提供跨模态的精准特征表示,从而提升模型在不同模态场景下的分类准确性与鲁棒性。Attention Multihop Graph and Multiscale Convolutional Fusion Network for Hype

2025-07-05 09:15:40 72

原创 【RT-DETR多模态融合改进】| 利用 iRMB 倒置残差移动块二次改进CGA Fusion

本文记录的是利用iRMB 模块改进 RT-DETR 的多模态融合部分。主要讲解如何利用一些现有的模块二次改进多模态的融合部分。的作用在于克服了常见模块无法同时吸收CNN 效率建模局部特征和利用Transformer 动态建模能力学习不同模态之间的长距离交互问题。相比一些复杂结构或多个混合模块的方法,能更好地权衡模型成本和精度。本文将其用于模块中并进行二次创新,更好地突出不同模态的重要特征,提升模型性能。Rethinking Mobile Block for Efficient Attention-based

2025-07-05 09:15:17 55

原创 【RT-DETR多模态融合改进】| TFAM:时序融合注意力模块 | 引入通道 - 空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题

TFAM模块通过时序信息驱动的注意力机制,解决了双时相特征融合中时序关联不足的问题,实现了更精准的变化区域定位和特征表示。其结构轻量、泛化性强,为变化检测任务提供了一种高效的特征融合解决方案。

2025-07-04 08:30:21 93

原创 【RT-DETR多模态融合改进】| PSFM,深层语义融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖关系

本文记录的是利用PSFM 模块改进 RT-DETR的多模态融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。该模块以可见光语义为引导、红外热信号为补充,通过双向注意力计算实现“语义类别”与“热目标位置”的精准对齐,同时捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语

2025-07-04 08:29:28 56

原创 【RT-DETR多模态融合改进】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰

本文记录的是利用SDFM 模块改进 RT-DETR 的多模态融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成跨模态特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion

2025-07-03 15:47:18 68

原创 【RT-DETR多模态融合改进】| CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合

本文记录的是利用CGA Fusion 模块改进 RT-DETR 的多模态融合部分。(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。DEA-Net: Single image dehazing based on detail-enhan

2025-07-03 15:46:49 145

指数加权移动平均平滑-Python实现

EWMA赋予每个数据点的权重随时间呈指数式递减,即越靠近当前时刻的数据点权重越大。权重分配是通过一个平滑系数α来实现的。该系数决定了近期数据相对于历史数据的权重比例。较大的α值意味着当前数据点的权重更大,平滑效果更灵敏于近期的变化;而较小的α值则使得平滑结果更加平滑,但可能会引入一定的滞后性。 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/qq_42591591/article/details/140851940

2024-10-24

YOLO v10 s模型的导出文件

YOLO v10 s模型的导出文件

2024-10-24

YOLO v10 L模型的导出文件

YOLO v10 L模型的导出文件

2024-10-24

高斯滤波-Python实现

高斯滤波计算滤波窗口内各点相对于中心点的权重。权重分配的原则是:距离中心点越近的点权重越大,距离越远的点权重越小。这样,通过对窗口内各点进行加权平均,可以实现数据的平滑处理。

2024-10-24

Savitzky-Golay滤波-Python实现

选择滤波窗口:首先选择一个合适大小的滑动窗口,这个窗口在数据上滑动,对窗口内的数据进行处理。 多项式拟合:在每个滑动窗口内,使用多项式函数对数据进行最小二乘法拟合。多项式的阶数和窗口大小可以根据数据的特性进行调整,以达到最佳的滤波效果。 计算拟合值:根据拟合得到的多项式函数,计算窗口中心点的估计值,作为滤波后的结果。这个估计值反映了窗口内数据的局部趋势,从而实现了数据的平滑。

2024-10-24

中值滤波算法-Python实现

中值滤波是将窗口内的均值换成中值,进行滤波处理

2024-10-24

移动平均平滑算法-Python实现

移动平均平滑是基于平均值的概念,通过计算序列中每个数据点周围的一定数量的数据点的平均值,来平滑时间序列中的噪声和波动,从而更清晰地观察序列的趋势和周期性。

2024-10-24

卡尔曼滤波算法-Python实现

卡尔曼滤波算法-Python实现

2024-10-24

yolov10m导出的模型文件

yolov10m导出的模型文件

2024-10-24

YOLOv10b的.onnx文件

YOLO v10模型导出文件

2024-10-24

RT-DETR官方最新源码资源

YOLO 系列由于在速度和准确性之间进行了合理的权衡,已成为最流行的实时目标检测框架。然而,我们观察到 YOLO 的速度和准确性会受到非极大值抑制(NMS)的负面影响。最近,基于端到端 Transformer 的检测器(DETRs)为消除 NMS 提供了一种替代方案。尽管如此,高计算成本限制了它们的实用性,并阻碍了它们充分发挥排除 NMS 的优势。在本文中,我们提出了实时检测 Transformer(RT-DETR),据我们所知,这是第一个解决上述困境的实时端到端目标检测器。我们分两步构建 RT-DETR,借鉴先进的 DETR:首先我们专注于在提高速度的同时保持准确性,然后在保持速度的同时提高准确性。具体来说,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来快速处理多尺度特征,从而提高速度。然后,我们提出最小不确定性查询选择,为解码器提供高质量的初始查询,从而提高准确性。

2024-10-24

小波卷积论文:Wavelet Convolutions for Large Receptive Fields

小波卷积(Wavelet Convolutions)是一种在卷积神经网络(Convolutional Neural Networks, CNNs)中用于增加感受野(Receptive Field)同时避免过度参数化的方法。 WT 是一种时频分析工具,本文采用 Haar WT,它可以在保留一定空间分辨率的情况下对信号进行分解。通过将 WT 与卷积操作相结合,提出了 WTConv 层。 小波卷积首先对输入进行小波变换,将其分解为不同频率的子带,如通过与特定的卷积核进行深度可分离卷积实现一级 Haar WT,得到低频分量和多个高频分量。然后在不同的频率子带上进行小卷积核的卷积操作,这些小卷积核可以在更大的原始输入区域上操作,从而增加感受野。最后通过逆小波变换(IWT)将处理后的频率子带组合起来得到输出。

2024-10-24

社团管理系统

基于NetBeans的社团信息管理系统,支持社团信息的查询、修改、增加。并能根据调用数据库进行一系列的操作。

2019-01-09

基于java的社团信息管理系统

通过“javaApplication”,直接输出社团简单的操作信息。

2018-12-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除