Unity DeepSeek API 聊天接入教程(0基础教学)

Unity DeepSeek API 聊天接入教程(0基础教学)

1.DeepSeek 介绍

DeepSeek是杭州深度求索人工智能基础技术研究有限公司推出的一款大语言模型。2025年1月20日,DeepSeek-R1正式上线,和当前市面上的主流AI相比,它在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。作为一款开源国产AI模型,它兼具普惠性和优越性能,非常适合大众开发者。我们也可以在Unity中调用它的强大功能,接下来将用一个简单例子介绍DeepSeek的接入和使用。

2.接入流程

Unity 接入DeepSeek API 实现聊天分为3个步骤

1.DeepSeek API Key 获取

首先我们需要到 DeepSeek API 开放平台 https://platform.deepseek.com/usage 获取API Key,用来和DeepSeek API接口进行数据通讯。

跳转到网页后点击 Keys
在这里插入图片描述
然后执行以下步骤:

注意:API Key创建成功后,要及时截图或妥善保存。因为API Key只有在创建成功的时候,才会暴露Key值全量字符串。一但关闭该面板,将无法在查看到本次创建的API Key值。

在这里插入图片描述

2.DeepSeek API 数据通讯模型声明

1.这一步我们要去获取到 DeepSeek API 标准的通讯协议格式,否则DeepSeek API 将无法识别我们发送的数据。即无法与其进行会话和通讯。

获取方式如下:
在这里插入图片描述

2.这一步展示了如何获取API(HTTP) 接口的请求地址,和API Key的传参示例,以及请求的Json数据的格式。

在这里插入图片描述

3.这一步展示了如何通过HTTP向DeepSeek发送消息,HTTP响应中的Json结构体内容。
以及DeepSeek对每一个字段的使用方式的介绍

在这里插入图片描述
拿到这些数据后,我们就可以回到Unity中进行制作功能了。

3.异步收发消息

下面展示一下DeepSeek API 数据模型和HTTP请求响应处理代码。

1.DeepSeek数据模型代码

/*----------------------------------------------------------------------------
* Title: #Title#
*
* Author: 铸梦
*
* Date: #CreateTime#
*
* Description:
*
* Remarks: QQ:975659933 邮箱:[email protected]
*
* 教学网站:www.yxtown.com/user/38633b977fadc0db8e56483c8ee365a2cafbe96b
----------------------------------------------------------------------------*/
using System.Collections.Generic;

#region DeepSeek API Key 配置数据模型
public class Configuration
{
   
    
    public string ApiKey {
   
    get; }

    public Configuration(string apiKey)
    {
   
   
        ApiKey=apiKey;
    }
}
#endregion

#region DeepSeek 请求数据模型
/// <summary>
/// 聊天对话消息完成请求
/// </summary>
public class ChatCompletionRequest
{
   
   
    /// <summary>
    /// 消息列表
    /// </summary>
    public List<ChatMessage> messages;
    /// <summary>
    /// AI模型,是聊天模型还是推理模型
    /// </summary>
    public string model;
    /// <summary>
    /// 如果设置为 True,将会以 SSE(server-sent events)的形式以流式发送消息增量。消息流以 data: [DONE] 结尾。
    /// </summary>
    public bool stream;
}
public class ChatMessage
{
   
   
    /// <summary>
    /// 消息内容
    /// </summary>
    public string content;
    /// <summary>
    /// 角色,是哪个角色的消息(是用户消息还是DP系统消息又或者是我们自定义的NPC角色消息)
    /// </summary>
    public string role;
}
#endregion

# region DeepSeek 响应数据模型
public class ChatCompletionResponse
{
   
   
    /// <summary>
    /// iD
    /// </summary>
    public string
### DeepSeek 本地部署与 Unity 集成教程 #### 准备工作 为了成功完成 DeepSeek 的本地部署以及其与 Unity 的集成,需先确认满足最低硬件需求并安装必要的软件环境。对于硬件方面的要求,建议拥有至少16GB RAM 和 NVIDIA GPU 支持 CUDA 计算能力的机器[^2]。 #### 安装依赖项 确保已安装 Python 版本不低于3.7,并配置好 pip 工具链以便后续操作顺利进行。另外还需要下载 Anaconda 或 Miniconda 来管理不同版本之间的兼容性问题。接着通过 conda 创建一个新的虚拟环境用于隔离项目中的各种包依赖关系: ```bash conda create --name deepseek-env python=3.9 conda activate deepseek-env ``` #### 获取源码及模型文件 访问官方 GitHub 页面获取最新发布的 DeepSeek 源代码仓库链接,按照说明克隆至本地计算机上。同时注意检查是否有预训练好的权重参数可供直接加载使用,这通常可以在发布页面找到对应的资源地址。 #### 构建服务端API接口 利用 FastAPI 或 Flask 等轻量级 Web 框架搭建 RESTful API 接口作为中介层连接前端应用程序(即Unity引擎)和服务端逻辑处理单元(DeepSeek核心算法)。此部分涉及到序列化输入数据结构体、定义路由映射规则等内容,在实现过程中应遵循REST设计原则以提高可维护性和扩展性。 #### 统一通信协议 考虑到跨平台调用效率和稳定性因素,推荐采用 gRPC 协议替代传统的 HTTP 请求方式。gRPC 是一种高效的远程过程调用 (Remote Procedure Call, RPC) 技术方案,能够显著减少网络传输开销并且提供更好的性能表现。因此需要编写相应的 .proto 文件描述消息格式并通过 protoc 编译器生成客户端 Stub 类库供 Unity 调用。 #### 实现 Unity 插件封装 在 Unity 中新建 C# Scripting Define Symbols 并引入之前编译得到的服务代理类实例对象。之后围绕这些基础组件构建更高层次的功能模块比如场景控制器、动画播放器等,最终形成一套完整的插件体系方便开发者快速接入 AI 功能特性。 #### 测试验证效果 最后一步是对整个系统的功能完整性进行全面测试评估,包括但不限于压力测试、边界条件覆盖度分析等方面的工作。可以借助 Postman 这样的工具辅助模拟真实请求流量模式从而发现潜在缺陷所在之处及时修复优化直至达到预期目标为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铸梦xy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值