keras中各种网络层的输入与输出
Cov1D
from keras import layers
layers.Conv1D(filters, kernel_size, activation=‘relu’, padding=‘same’, …)
filters: 过滤器数量,决定输出后每个时间步上的维度,即下图中第二张图的宽度
kernel_size:时间步的步长,下图第一张图中小方框的长度
padding:
为 same时,输出时间步长 = 输入时间步长
为 valid 时,输出的时间步长 = 输入时间步长 - kernel_size + 1
其中竖轴为时间步,横轴表示每个时间步下的特征。
输入:(batch_size, 输入时间步长, features)
输出:(batch_size, 输出时间步长, filters)
实例:
kaggle叶子分类问题
LSTM
图中看起来是三个cell,其实是一个cell在不同时刻上的拼接,也就是说其实是一个cell在不同时刻的状态。我们就以中间那个cell为例进行说明吧。
其中,四个黄色的小矩形就是普通神经网络的隐藏层结构,其中第一、二和四的激活函数是sigmoid,第三个的激活函数是tanh。t 时刻的输入X和 t-1 时刻的输出 h(t-1) 进行拼接,然后输入cell中,其实可以这样理解,我们的输入X(t)分别feed进了四个小黄矩形中,每个小黄矩形中进行的运算和正常的神经网络的计算一样(矩阵乘法),有关记忆的部分完全由各种门结构来控制(就是0和1),同时在输入时不仅仅有原始的数据集,同时还加入了上一个数据的输出结果,也就是h(t-1),那么讲来LSTM和正常的神经网络类似,只是在输入和输出上加入了一点东西。cell中可以大体分为两条横线,上面的横线用来控制长时记忆,下面的横线用来控制短时记忆。关于LSTM我通过参考画了一张图,如下:
输入:
下面我们就来说说输入问题,在Keras中,LSTM的输入shape=(samples, time_steps, input_dim),其中samples表示样本数量,time_steps表示时间步长,input_dim表示每一个时间步上的维度。我举一个例子吧,现在有一个数据集有四个属性(A,B, C, D),我们希望的预测标签式D,假设这里的样本数量为N。如果时间步长为1,那么此时的输入shape=(N, 1, 4),具体的数据是这样的[A(t-1), B(t-1), C(t-1), D(t-1)](此处表示一个数据样本),样本标签为[D(t)];如果时间步长为2,那么此时的输入shape=(N, 2, 4),具体的数据是[[A(t-2), B(t-2), C(t-2), D(t-2)], [A(t-1), B(t-1), C(t-1), D(t-1)]](此处仍表示一个样本数据)。
输出:
关于Keras中LSTM的输出问题,在搭建网络时有两个参数,一个是output_dim表示输出的维度,这个参数其实就是确定了四个小黄矩形中权重矩阵的大小。另一个可选参数return_sequence,这个参数表示LSTM返回的时一个时间序列还是最后一个,也就是说当return_sequence=True时返回的是(samples, time_steps, output_dim)的3D张量,如果return_sequence=Flase时返回的是(samples, output_dim)的2D张量。比如输入shape=(N, 2, 8),同时output_dim=32,当return_sequence=True时返回(N, 2, 32);当return_sequence=False时返回(N, 32),这里表示的时输出序列的最后一个输出。
以上描述转载至:Keras中的LSTM—简书
layers.LSTM(units,activation=‘tanh’,return_sequences=False,…)
units:输出的维度,确定了四个小黄矩形中权重矩阵的大小。
return_sequences:表示LSTM返回的是一个时间序列还是最后一个cell的输出。
当return_sequence=True时返回的是(samples, time_steps, output_dim)的3D张量,可后接LSTM层用于搭建多层LSTM。
当return_sequence=Flase时返回的是(samples, output_dim)的2D张量,LSTM层最后一个cell的输出。