Java学习——算法——Kruskal算法(公交站问题)

学习尚硅谷韩顺平老师的Java数据结构笔记,详情请移步网站
1、应用场景
看一个应用场景和问题:
在这里插入图片描述
(1) 某城市新增 7 个站点(A, B, C, D, E, F, G) ,现在需要修路把 7 个站点连通
(2) 各个站点的距离用边线表示(权) ,比如 A – B 距离 12 公里
(3) 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?
2、算法介绍
(1) 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
(2) 基本思想:按照权值从小到大的顺序选择 n-1 条边,并保证这 n-1 条边不构成回路
(3) 具体做法:首先构造一个只含 n 个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。
3、图解说明
以城市公交站问题来图解说明 克鲁斯卡尔算法的原理和步骤:
在含有 n 个顶点的连通图中选择 n-1 条边,构成一棵极小连通子图,并使该连通子图中 n-1 条边上权值之和达到最小,则称其为连通网的最小生成树。
在这里插入图片描述
例如,对于如上图 G4 所示的连通网可以有多棵权值总和不相同的生成树。
在这里插入图片描述
以上图 G4 为例,来对克鲁斯卡尔进行演示(假设,用数组 R 保存最小生成树结果)。
第 1 步:将边<E,F>加入 R 中。边<E,F>的权值最小,因此将它加入到最小生成树结果 R 中。
第 2 步:将边<C,D>加入 R 中。上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果 R 中。
第 3 步:将边<D,E>加入 R 中。上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果 R 中。
第 4 步:将边<B,F>加入 R 中。上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果 R 中。
第 5 步:将边<E,G>加入 R 中。上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果 R 中。
第 6 步:将边<A,B>加入 R 中。上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果 R 中。
此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。
在这里插入图片描述
在将<E,F> <C,D> <D,E>加入到最小生成树 R 中之后,这几条边的顶点就都有了终点:
(01) C 的终点是 F。
(02) D 的终点是 F。
(03) E 的终点是 F。
(04) F 的终点是 F。
关于终点的说明:
(1) 就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
(2) 因此,接下来,虽然<C,E>是权值最小的边。但是 C 和 E 的终点都是 F,即它们的终点相同,因此,将<C,E> 加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一个终点,否则将构成回路。
4、最佳实践

package Algorithm.Kruskal;

/**
 * Kruskal算法
 */

//定义边
class EData{
   
   
      char start;
      char end;
      int weight;

    public EData(char start, char end, int weight) {
   
   
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    @Override
    public String toString() {
   
   
        return "EData{" +
                "start=" + start +
                ", end=" + end +
                ", weight=" + weight +
                '}';
    }
}

public class Kruskal {
   
   

    private int edgeNum;//边的个数
    private char[] vertexs;//顶点数组
    private int[][] matrix;//邻接矩阵
    //使用INF表示两个顶点不能联通
    private static final int INF = Integer.MAX_VALUE;

    //构造函数
    public Kruskal(char[] vertexs,int[][] matrix){
   
   
        //初始化顶点
        this.vertexs = new char
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值