Linux下深度学习虚拟环境的搭建与模型训练

在深度学习实践中,环境配置是十分重要且免不了的一步。本文以 YOLOv4 模型,介绍在Linux下虚拟环境配置到模型训练的过程。

安装Miniconda:

Miniconda是Anaconda的一个轻量级版本,非常适合用于科学计算和数据处理。

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

创建并激活Python环境:

为YOLOv4创建一个隔离的Python环境,避免依赖冲突。

conda create -n yolov4 python=3.8.8
conda activate yolov4

使用以下命令检查PyTorch是否正确安装:

import torch
print(torch.cuda.is_available())
print(torch.cuda.device_count())
print(torch.version.cuda)

配置镜像源:

使用清华大学提供的镜像源可以加快包的下载速度。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

安装PyTorch及依赖:

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

 YOLOv4的训练和测试可以通过多种方式实现,这里我们将介绍使用Darknet框架训练的方法。

YOLOv4在Darknet的源代码可以在GitHub上找到,下载地址是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曲途光未央

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值