NLP实战项目(4)——LSTM实体识别

1、数据集介绍

数据集源于论文Chinese NER using Lattice LSTM,从新浪财经上爬取,包括中国股市上市公司高级管理人员的简历。CoNLL 格式(首选 BIOES 标签方案),每个字符的标签为一行。句子用 null 行分割。链接及格式如下:

https://github.com/jiesutd/LatticeLSTM

图片

2、LSTM模型

LSTM(Long_short_term_memory),使用LSTM模型可以更好的捕捉到较长距离的依赖关系,通过训练可以学到记忆那些信息和遗忘那些信息, 能解决梯度爆炸和梯度弥散问题,可以处理更长的文本数据。

TikZ 绘图实例——LSTM元胞结构图 - LaTeX 工作室

3、代码实现

文末免费获取数据集和源码压缩包。

进入下面公众号聊天窗口回复“LSTM实体识别”即可获取完整源码。

最后:

小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

 

### 知识图谱与自然语言处理实战案例 #### 使用Jiagu进行知识图谱构建和自然语言处理任务 为了更好地理解知识图谱和自然语言处理(NLP)的应用,可以考虑使用Jiagu这一强大的NLP工具来完成一系列的任务。Jiagu基于BiLSTM等模型,并经过大规模语料训练,能够提供多种NLP功能,如中文分词、词性标注、命名实体识别、情感分析、关系抽取等[^2]。 下面是一个具体的例子,展示了如何利用Jiagu来进行新词发现以及知识图谱中的关系抽取: ```python import jiagu # 新词发现示例 jiagu.findword('input.txt', 'output.txt') # 利用信息熵算法从大量文本中找出潜在的新词语 # 关系抽取示例 text = "李华是北京大学的学生" entities = jiagu.ner(text) for entity in entities: print(entity) relations = jiagu.relation_extract(text, entities) for relation in relations: print(relation) ``` 这段代码首先调用了`findword()`函数执行新词发现操作;接着对于给定的一句话进行了命名实体识别(`ner()`)得到其中涉及的人物名或地点名等重要元素;最后再通过`relation_extract()`尝试解析这些实体间可能存在的关联,比如人物与其所属机构之间的隶属关系。 这种做法不仅有助于加深对原始文档内容的理解,还可以帮助建立更加丰富的结构化数据集——即所谓的“知识图谱”,从而支持更复杂的信息检索和服务开发需求[^5]。 #### 构建知识图谱的过程概述 当涉及到创建一个完整的知识图谱项目时,则需经历几个关键阶段:首先是定义领域范围内的核心概念及其相互间的逻辑联系;其次是收集整理来自不同渠道的数据源作为输入材料;再次是对上述素材实施预处理(清洗)、特征工程等一系列准备工作以便后续加工;最终则是运用诸如Jiagu这样的专用软件包去自动化地挖掘隐藏于文字背后的价值信息并将其转化为图形化的表达形式供进一步查询分析之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值